›› 2011, Vol. 32 ›› Issue (11): 3409-3413.

• Geotechnical Engineering • Previous Articles     Next Articles

Discussion of computational method of rock elastic modulus on in-situ direct shear test

CHEN Jian-sheng,CHEN Cong-xin,LU Zu-de,CHEN Wei-wei   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2010-03-10 Online:2011-11-01 Published:2011-11-09

Abstract: Through the discussion and analysis of the two traditional computing method of elastic modulus with the normal compressed deformation curve of in-situ direct shear test, which indicate that the real value is bigger than its directly calculated modulus of confined compression and the modulus calculated by the empirical formula of the in-situ load test. A novel integrated method is proposed to calculate the elastic modulus with the in-situ direct shear compression curve. At the same time, the three methods are used to calculate the elastic modulus of highly weathered hornfels in Lingao Ⅲ. The elastic modulus calculated with integrated method of in-situ direct shear compression curve is the sum of the directly calculated modulus of confined compression and the modulus calculated by the empirical formula of the in-situ load test. The calculating principle of integrated method is consistent with the mechanics and deformation mechanism of direct shear test with normal direction load. The calculated value is more close to the real value with which the problem of calculating elastic modulus is resolved effectively in the stability analysis of slope rock deformation.

Key words: elastic modulus, in-situ direct shear test, compression curve, highly weathered hornfels

CLC Number: 

  • TU 45
[1] KE Wen-hai, GUAN Ling-xiao, LIU Dong-hai, DENG Jian-lin, LI Ke, XU Chang-jie, . Research on upper pipeline-soil interaction induced by shield tunnelling [J]. Rock and Soil Mechanics, 2020, 41(1): 221-228.
[2] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[3] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[4] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[5] LI Shen-zhen, SHA Peng, WU Fa-quan, WU Jie. Anisotropic characteristics analysis of deformation of layered rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 366-373.
[6] ZHANG Fan, HU Wei, GUO Han-qun, HU Da-wei, SHENG Qian, SHAO Jian-fu,. Nanoindentation tests on granite after heat treatment [J]. , 2018, 39(S1): 235-243.
[7] WU Yong-sheng, TAN Zhong-sheng, YU Xian-bin, YU Yu, ZHU Yong,. Dilatancy behavior of phyllite in uniaxal compressive tests under different loading azimuths [J]. , 2018, 39(8): 2747-2754.
[8] ZHANG Yan, YU Da-wei, YE Jian-hong,. Study on measurement methodology of tensile elastic modulus of rock materials [J]. , 2018, 39(6): 2295-2303.
[9] WANG Min-min, LU Qun, GUO Shao-long, GAO Meng, SHEN Zhong-tao,. Dynamic behavior of soil with fiber and cement under cyclic loading [J]. , 2018, 39(5): 1753-1760.
[10] CHEN Shu-feng, KONG Ling-wei, LI Cheng-sheng, . Nonlinear characteristics of Poisson's ratio of silty clay under low amplitude strain [J]. , 2018, 39(2): 580-588.
[11] QI Xian-yin, LI Jia-zhuo, WANG Wei,. An anisotropic permeability model of coal containing methane based on different directional modulus reduction ratios [J]. , 2018, 39(2): 635-643.
[12] ZHANG Xiang-dong, LI Jun, SUN Qi, YI Fu, QU Zhi,. Study on dynamic damage mechanism of frozen soil based on elastic modulus degradation [J]. , 2018, 39(11): 4149-4156.
[13] GU Ren-guo, ZOU Yu, FANG Ying-guang, HU Yu-guang, . Rheological model of soft soils using nonlinear instantaneous elastic modulus [J]. , 2018, 39(1): 237-241.
[14] LIU Han-bing, ZHANG Hu-zhu, WANG Jing,. Effect of freeze-thaw and water content on mechanical properties of compacted clayey soil [J]. , 2018, 39(1): 158-164.
[15] LIU Jun-xin, ZHANG Ke, LIU Wei, SHI Xi-lin,. Experimental study of mechanical behaviours of shale under different confining pressures and different strain rates [J]. , 2017, 38(S1): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[2] LI Jia-gui, CHEN Zheng-han, HUANG Xue-feng, LI Jia. In-site test on earth pressure and saturating collapse test for unsaturated loess Q3 on high slope[J]. , 2010, 31(2): 433 -440 .
[3] JIE Ying, TANG Xiao-wei , LUAN Mao-tian. Finite-element free Galerkin coupling method for sand liquefaction-induced deformation[J]. , 2010, 31(8): 2643 -2647 .
[4] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[5] LI Shu-cai,XU Bang-shu,DING Wan-tao,ZHANG Qing-song. Weighted function method for minimum rock cover thickness of subsea tunnel[J]. , 2009, 30(4): 989 -996 .
[6] XUE Yun-liang, LI Shu-lin, LIN Feng, XU Hong-bin. Study of damage constitutive model of SFRC considering effect of damage threshold[J]. , 2009, 30(7): 1987 -1992 .
[7] REN Zhong, Sheng Qian. Study on the disciplinary structure and its evolution of rock mechanics in China[J]. , 2009, 30(S1): 293 -298 .
[8] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[9] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[10] LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. , 2011, 32(S1): 100 -105 .