›› 2012, Vol. 33 ›› Issue (2): 577-584.

• Geotechnical Engineering • Previous Articles     Next Articles

Improvement of cantilever beam limit equilibrium model of counter-tilt rock slopes

LU Hai-feng1, LIU Quan-sheng1, 2, CHEN Cong-xin2   

  1. 1. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Online:2012-02-10 Published:2012-02-14

Abstract: The stability analysis of counter-tilt rock slopes is a difficulty in rock slope analysis, and there are many questions need to be solved. Limit equilibrium method is the most common and relatively effective method at present. Based on the cantilever beam limit equilibrium model by D. P. Adhikary and A. V. Dyshin, the form of fracture plane and the influences of cohesion and severe of different layers are mainly modified, and an improved cantilever beam limit equilibrium model is given. Based on the new model, a new method to analyze the stability of counter-tilt rock slopes is proposed by using residual unbalance force as standard, and a comprehensive research on the influences factors of counter-tilt rock slopes is made. By doing these work, some conclusions and laws which are useful for design and construction of these type of slopes are drawn.

Key words: counter-tilt rock slope, limit equilibrium method, influencing factor

CLC Number: 

  • TU 457
[1] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[2] HU Ming-jian, ZHANG Chen-yang, CUI Xiang, LI Kun-yao, TANG Jian-jian, . Experimental study on capillary rise and influencing factors in calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(11): 4157-4164.
[3] ZHONG Zu-liang, BIE Cong-ying, FAN Yi-fei, LIU Xin-rong, LUO Yi-qi, TU Yi-liang, . Experimental study on grouting diffusion mechanism and influencing factors of soil-rock mixture [J]. Rock and Soil Mechanics, 2019, 40(11): 4194-4202.
[4] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[5] WANG Zheng-zhen, GONG Wei-ming, DAI Guo-liang,WANG Xiao-yang, LI Liang-liang, XIAO Gang,. Field test on composite foundation with thick cushion and sand pile group [J]. , 2018, 39(10): 3755-3762.
[6] YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. , 2017, 38(7): 2029-2035.
[7] LIU Zhen-ping, YANG Bo, LIU Jian, HE Huai-jian,. Three-dimensional limit equilibrium method based on GRASS GIS and TIN sliding surface [J]. , 2017, 38(1): 221-228.
[8] BAO Han, WU Fa-quan, XI Peng-cheng,. Analysis of characteristics and influencing factors of elastic modulus of jointed rock mass based on statistical constitutive relation [J]. , 2016, 37(9): 2505-2512.
[9] ZHOU Yang-yi, FENG Xia-ting, XU Ding-ping, HE Ming-wu,. A simplified analysis method of block stability in large underground powerhouse [J]. , 2016, 37(8): 2391-2398.
[10] OUYANG Bin-qiang, TANG Chao-sheng, WANG De-yin, XU Shi-kang, SHI Bin. Advances on soil moisture evaporation [J]. , 2016, 37(3): 625-636.
[11] SONG Xin-hua, YAN Hong-hao. Analysis of stability of masonry slope based on cusp catastrophe theory [J]. , 2016, 37(12): 3499-3505.
[12] ZHOU Fei , XU Qiang , LIU Han-xiang , WANG Long,. An experimental study of dynamic response characteristics of slope with horizontal weak interlayer under earthquake [J]. , 2016, 37(1): 133-139.
[13] HOU Sheng-nan. Research on influencing factors of lateral capacity of single pile in Shanghai [J]. , 2015, 36(S2): 565-570.
[14] CHU Ya, LIU Song-yu, CAI Guo-jun, . Research and development of calibration chamber model test with in-situ injection device [J]. , 2015, 36(S1): 452-458.
[15] ZHANG Zhi-peng, LIU Run. Study of factors influencing pile foundation driveability based on GRLWEAP [J]. , 2015, 36(S1): 634-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[10] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .