›› 2012, Vol. 33 ›› Issue (4): 1051-1060.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Reliability analysis of seepage stability of core-wall rockfill dam based on stochastic response surface method

HU Ran1, 2,CHEN Yi-feng1, 2,LI Dian-qing1, 2,ZHOU Chuang-bing1, 2,TANG Xiao-song1,2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan 430072, China
  • Received:2010-10-22 Online:2012-04-13 Published:2012-04-26

Abstract: The finite element method and stochastic response surface method are combined to analyze the reliability of seepage stability in Shuangjiangkou core-wall rockfill dam project. The seepage flow analysis of the core-wall rockfill dam and the reliability analysis can be conducted separately within the framework of reliability analysis based on the stochastic response surface method. The nodes with the larger hydraulic gradient are selected to establish seepage stability function using the finite element method and stochastic response surface method. The failure probabilities of seepage failure at each node are then calculated and the maximum failure probability is taken as the failure probability of the core-wall. The relationship between the hydraulic gradient of the nodes with maximum failure probability and the hydraulic conductivity of the core-wall and the alluvial deposits, the relationship between the hydraulic gradient of the nodes with maximum failure probability and the upper water level, and the effects of the hydraulic conductivity of core and the variation of upper water level on failure probability of seepage failure of the core-wall are analyzed. The results show that third order Hermite expansion is able to ensure good precision with acceptable time consumption. The seepage at maximum failure probability node in Shuangjiangkou core-wall dam is closely related to upper water level, but has a weak negative correlation with the hydraulic conductivity of the core-wall and is less significant with the hydraulic conductivity of alluvial deposits. On the other hand, as the coefficient of variation of the upper water level increasing, the failure probability increases drastically, but this effect is less significant with regard to the hydraulic conductivity of the core-wall. The results provide a further evidence for readily application of the stochastic response surface method to practical engineering.

Key words: reliability analysis, stochastic response surface method, finite element analysis, seepage stability, core-wall rockfill dam

CLC Number: 

  • TV 139.14
[1] YE Guan-bao, ZHENG Wen-qiang, ZHANG Zhen, . Investigation on distribution of negative friction of frictional piles in large filling sites [J]. Rock and Soil Mechanics, 2019, 40(S1): 440-448.
[2] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[3] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
[4] FAN Wen-liang, WANG Yu-le, WEI Qi-ke, YANG Peng-chao, LI Zheng-liang, . Improved fourth-moment method for reliability analysis of geotechnical engineering [J]. , 2018, 39(4): 1463-1468.
[5] LI Shu-cai, HE Peng, LI Li-ping, ZHANG Qian-qing, SHI Shao-shuai, XU Fei, LIU Hong-liang. Reliability analysis method of sub-classification of tunnel rock mass and its engineering application [J]. , 2018, 39(3): 967-376.
[6] CHEN Zu-yu, LI Kang-ping, LI Xu, ZHAN Cheng-ming,. A preliminary study of allowable factor of safety in gravity retaining wall stability analysis [J]. , 2018, 39(1): 1-10.
[7] XU Jiang, GONG Wei-ming, ZHANG Qi, DAI Guo-liang, HUO Shao-lei, YANG Chao ,. Numerical simulation and field test study on vertical bearing behavior of large diameter steel of inclined piles [J]. , 2017, 38(8): 2434-2440.
[8] FENG Jun, ZHANG Jun-yun, ZHU Ming, JIANG Nan,. Characteristic study of horizontal bearing capacity and pile group effect coefficient of laterally loaded high pile group foundation for bridge in soft soil [J]. , 2016, 37(S2): 94-104.
[9] LIN Cong, YANG Qiang, WANG Hai-bo, LI Ren-hong,. Numerical simulation of Mengdigou arch dam based on nonlinear finite elements [J]. , 2016, 37(9): 2624-2630.
[10] CHEN Zu-yu , ZHAN Cheng-ming , YAO Hai-lin , CHEN Li-hong , LI Xu,. Safety criteria and standards for stability analysis of gravity retaining walls [J]. , 2016, 37(8): 2129-2137.
[11] ZHOU Ying-bo, ZHANG Yu-jun. Elastoplastic finite element analysis for influences of pressure solution on thermo-hydro-mechanical coupling in aggregate rock [J]. , 2016, 37(6): 1781-1790.
[12] ZHANG Si-yuan, ZHANG Yu-jun. 3D finite element analyses for anisotropy of deformation and strength of a cave in a dual-pore-fracture rock masses [J]. , 2016, 37(12): 3583-3590.
[13] CHEN Xi , ZHANG Xun-wei , CHEN Jia-lin , JIN Feng , YU Yu-zhen,. Seepage and stability analysis of unsaturated core-wall earth dam with fluctuating water level [J]. , 2015, 36(S1): 609-613.
[14] ZHANG Pan-pan, LUO Ting, YAO Yang-ping. Finite element implementation of UH model considering expansion of bentonite [J]. , 2015, 36(S1): 664-668.
[15] FU Chang-jing , LI Guo-ying , MI Zhan-kuan , ZHAO Tian-long,. A simplified analytical method for calculating the earth pressure of the unloading-type sheet pile wharf [J]. , 2015, 36(8): 2426-2432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[2] YANG Zi-you, GU Jin-cai, YANG Ben-shui, CHEN An-min, XU Jing-mao. Numerical analysis of reinforcement effects and response to dynamic loads characteristics of rock bolts[J]. , 2009, 30(9): 2805 -2809 .
[3] CHEN Kai-sheng,SHA Ai-min. Research on resilient modulus test of compacted loess[J]. , 2010, 31(3): 748 -752 .
[4] XU Xing-hua, SHANG Yue-quan, WANG Ying-chao. Research on comprehensive evaluation decision system for landslide disaster[J]. , 2010, 31(10): 3157 -3164 .
[5] WANG Xie-qun, ZOU Wei-lie, LUO Yi-dao, DENG Wei-dong, WANG Zhao. Influence of compaction degree and gradation on SWCC of compacted clay soil[J]. , 2011, 32(S1): 181 -184 .
[6] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[7] XIA Tang-dai , SUN Miao-miao , CHEN Chen. An improved method for multiple scattering and isolation of horizontal shear wave using double row of elastic discontinuous barrier[J]. , 2011, 32(8): 2402 -2408 .
[8] GONG Si-yuan,DOU Lin-ming,HE Jiang,HE Hu,LU Cai-ping,MU Zong-long. Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment[J]. , 2012, 33(1): 41 -47 .
[9] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .
[10] YAO Chi ,JIANG Qing-hui ,YE Zu-yang ,ZHOU Chuang-bing . Initial flow method for unconfined seepage problems of fracture networks[J]. , 2012, 33(6): 1896 -1903 .