›› 2012, Vol. 33 ›› Issue (4): 1223-1239.

• Numerical Analysis • Previous Articles     Next Articles

Study of preprocessing of drilling data for building 3D strata model

XIA Yan-hua1,BAI Shi-wei2   

  1. 1. School of Civil Engineering, Anhui University of Science & Technology, Huainan, Anhui 232001, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2010-12-29 Online:2012-04-13 Published:2012-04-26

Abstract: Drilling data is one of main sources for building 3D strata model. Usually the stratigraphic interfaces are constructed by interpolation based on drilling data. Processing drilling data accurately is the basic premise of building realistic 3D strata model. Because the option of the interpolation data of the stratigraphic interfaces is not unique mathematically, the complex topological relationships of the strata usually result in the condition that the building 3D strata model is not realistic. In order to gain unique and realistic interpolation data, a stratigraphic column, which records the chronological order of the strata and their topological relationships, is defined in accordance with geological history. The topological relationships of the strata are generalized into two classes: either ‘onlap’ or ‘erosion’. According to the stratigraphic column, the unique interpolation data of the stratigraphic interfaces can be determined and then be used to build realistic 3D strata model. Python is used to implement the algorithm of the preprocessing of drill data. The examples prove that the project can validly forecast realistic strata.

Key words: drilling data, stratigraphic column, chronological order, topological relationships of strata

CLC Number: 

  • TU 42
[1] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[2] XIA Jia-guo, GAO Wei, CHENG Ya-xing, HU Rui-lin, XU Pei-fen, SUI Hao-yue, . A new approach for precise detection of the geological structure of soil-rock mixture deposit and its application [J]. , 2018, 39(8): 3087-3094.
[3] ZHAO Hai-ying, CHEN Yuan-zhong, LI Yan-peng, LIU Guo-jun, LI Tao, XIA Shu-jun, FAN Han-zhou. CO2 monitoring with time-lapse vertical seismic profile [J]. , 2018, 39(8): 3095-3102.
[4] ZHANG Ju-lian, LIANG Zhi-rong, LI Wei, LIU Jing-de. Dynamic response of interaction between existing pit slope and structure [J]. , 2018, 39(4): 1227-1235.
[5] LI Jian-peng, NIE Qing-ke, LIU Quan-sheng, YU Jun-chao,. Risk assessment method of karst ground collapse based on weight back analysis [J]. , 2018, 39(4): 1395-1400.
[6] LI Wei, XU Qiang, WU Li-zhou, LI Si-qi, . Influence of seepage forms of confined water on translational landslide [J]. , 2018, 39(4): 1401-1410.
[7] TANG Yu-feng, SHI Fu-qiang, LIAO Xue-yan, ZHOU Shuai, . Determination on flow rules of large deformation analysis of slope using SPH method [J]. , 2018, 39(4): 1509-1516.
[8] XU Xu-tang, JIAN Wen-bin, . Experimental study on rainfall infiltration of slope under thrust at front end [J]. , 2017, 38(12): 3547-3554.
[9] HE Ke-qiang, GUO Dong, ZHANG Peng, GUO Lu, ZHANG Guo-dong,. The direction ratio of vertical displacement for rainfall-induced landslides and its early warning criterion [J]. , 2017, 38(12): 3649-3659.
[10] DENG Dong-mei, LIANG Ye, WANG Liang-qing, WANG Chang-shuo,. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression— a case of landslides in Three Gorges Reservoir area [J]. , 2017, 38(12): 3660-3669.
[11] WANG Xun, LI Gang, LIU Yong, FU Kun. Critical sliding prediction criterion of landslide based on constant deformation rate [J]. , 2017, 38(12): 3670-3679.
[12] LI Shu, XU Qiang, ZHANG Li-zhan, PENG Da-lei, Lü Hong-bin, SONG Shao-jie,. Time effect and mechanism of strength weakening of loess soaked in water in Heifangtai area [J]. , 2017, 38(7): 2043-2048.
[13] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[14] FENG Chun , LI Shi-hai , SUN Hou-guang , LI Zhi-gang,. Particle contact-based meshfree method and its application to slope disaster range simulation [J]. , 2016, 37(12): 3608-3617.
[15] XUE Hai-bin , DANG Fa-ning , YIN Xiao-tao , LEI Man , YANG Chao,. Progressive failure characteristics of slopes considering strain-softening behavior of geotechnical materials and dynamics [J]. , 2016, 37(8): 2238-2246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[2] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[3] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[4] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[5] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[6] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[7] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[8] SHI Dan-da, ZHOU Jian, JIA Min-cai, YANG Yong-xiang. Back analysis of parameters and long-term settlement prediction of harbor soft ground considering its creep behavior[J]. , 2009, 30(3): 746 -750 .
[9] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[10] LI Jian ,TAN Zhong-sheng ,YU Yu ,NI Lu-su. Research on construction procedure for shallow large-span tunnel undercrossing highway[J]. , 2011, 32(9): 2803 -2809 .