›› 2012, Vol. 33 ›› Issue (6): 1795-1800.

• Geotechnical Engineering • Previous Articles     Next Articles

Fuzzy random reliability analysis of slope based on fuzzy point estimate method

WANG Yu1, 2, 3,JIA Zhi-gang1,LI Xiao2,WANG Can1,YU Hong-ming1   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China; 3. Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
  • Received:2010-12-15 Online:2012-06-11 Published:2012-06-14

Abstract: The fuzzy point estimate method of slope engineering reliability evaluation is presented based on the statistical moment point estimate method and fuzzy random theory. The slope stability limit state equation is transformed from fuzzy random set to normal random set, then the point estimation method is used to solve the slope reliability indexes. In view of the approximate distribution types for physico-mechanical parameters of rock mass, the normal fuzzy number, which is different from the normal number is used to do fuzzy random variable. By doing this, the physico-mechanical parameters are closer to its real distribution types. The fuzziness of various mechanical parameters is considered. The calculation results can reflect the true working condition of slope. A case study shows that the method has a higher calculation efficiency and reliable calculation results, and it is convenient in use; it also avoids the shortcomings of traditional methods. The method has great potential for slope reliability analysis of complex slope or functions for implicit expression; it provides a new way to slope reliability analysis and has a broad prospect of application.

Key words: slope engineering, fuzzy random reliability, fuzzy point estimate method, normal fuzzy number, reliability index

CLC Number: 

  • TU 457
[1] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[2] WANG Wei, CHEN Guo-qing, ZHENG Shui-quan, ZHANG Guang-ze, WANG Dong, . Study on the vector sum method of slope considering tensile-shear progressive failure [J]. Rock and Soil Mechanics, 2019, 40(S1): 468-476.
[3] JIANG Ze-feng, ZHANG Ge, ZHU Da-yong, WANG Jun, . Critical sliding field method for slope under anchorage force and its application [J]. Rock and Soil Mechanics, 2019, 40(7): 2799-2806.
[4] LI Dian-qing, ZHOU Qiang, CAO Zi-jun, . Safety criteria for geotechnical design based on generalized reliability ratio of safety margin [J]. Rock and Soil Mechanics, 2019, 40(10): 3977-3986.
[5] CUI Fang-peng, XU Qiang, YIN Yue-ping, HU Rui-lin, CHEN Zi-juan, LIU Wei,. Dynamic response of slope based on fracture mechanisms of strip-shape hypocenter [J]. , 2018, 39(1): 320-330.
[6] ZHU Yong, ZHOU Hui, FENG Xia-ting, ZHANG Chuan-qing, ZHANG Ming-qiang, YANG Fan-jie,. Directional simulation of failure probability of rock slope wedge [J]. , 2017, 38(S1): 151-157.
[7] CHEN Chun-shu, XIA Yuan-you. Seismic reliability analysis of slope reinforced with prestressed anchor cable based on global limit response surface [J]. , 2017, 38(S1): 255-262.
[8] XIN Jun-xia, WU Xing-zheng, GAO Wei, REN Guo-jia, MA Jun-xiang, FAN Lei, . Copula-based analysis of load-displacement curves of cement-fly ash-gravel pile [J]. , 2016, 37(S1): 424-434.
[9] WANG Chao, ZHANG She-rong, ZHANG Feng-hua, DU Cheng-bo. A dynamic simulation analysis method of high-steep slopes based on real-time numerical model and its applications [J]. , 2016, 37(8): 2383-2390.
[10] CHEN Jing-yu , ZHAO Lian-heng , LI Liang , TAN Han-hua,. Back analysis of shear strength parameters based on Excel spreadsheet and upper bound limit analysis method [J]. , 2016, 37(3): 827-834.
[11] LUO Zheng-dong , DONG Hui , CHEN Cheng , SU Yong-hua,. An analytic method for slope stability reliability based on Kriging model [J]. , 2015, 36(S1): 439-444.
[12] SHU Su-xun,GONG Wen-hui. An improved fuzzy point estimate method for slope stability analysis based on neural network [J]. , 2015, 36(7): 2111-2116.
[13] LIU Xiao , TANG Hui-ming , XIONG Cheng-ren , LIU Qing-bing,. A new method for reliability analysis of dynamic slope stability with considering energy-time distribution [J]. , 2015, 36(5): 1428-1443.
[14] XIN Jian-ping ,TANG Xiao-song ,ZHENG Ying-ren ,ZHANG Dong,. Large-scale model tests of single-row and triple-row anti-slide micropiles [J]. , 2015, 36(4): 1050-1056.
[15] XIA Kai-zong , LIU Xiu-min , CHEN Cong-xin , SONG Ya-fen , OU Zhe , LONG Yi,. Analysis of mechanism of bedding rock slope instability with catastrophe theory [J]. , 2015, 36(2): 477-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[8] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] SONG Yi-min , JIANG Yao-dong , MA Shao-peng , YANG Xiao-bin , ZHAO Tong-bin . Evolution of deformation fields and energy in whole process of rock failure[J]. , 2012, 33(5): 1352 -1356 .