›› 2012, Vol. 33 ›› Issue (10): 3001-3005.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of rock NMR experiment and damage mechanism analysis under freeze-thaw condition

XU Yu-juan, ZHOU Ke-ping, LI Jie-lin, ZHANG Ya-min   

  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Received:2011-05-27 Online:2012-10-10 Published:2012-10-19

Abstract: Taking granite as samples, a freeze-thaw cycle experiment (with the temperature ranged from -40℃ to 20℃) is conducted. The highest cycles are 100. Nuclear magnetic resonance (NMR) technology is employed to observe the rock damage changes. The results show that freeze-thaw cycle action will produce damages to the sample. Some samples crack after a certain cycles. Both the T2 spectrum and NMR image indicate that the action of freezing and thawing cycle redistributes the inner structure of sample. The T2 curves change greatly after the cracks emerged. Finally, damage mechanism is adopted to analyze granite damage principle in condition of freeze-thaw. An equation of material continuity and porosity is obtained. Then an equation between effective stress and porosity is established. Taking N-4 for example, the relationship between effective stress and cycles is obtained.

Key words: nuclear magnetic resonance (NMR), freeze-thaw cycles, rock damage, continuity

CLC Number: 

  • TU 452
[1] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[2] FAN Yun-hui, ZHU Qi-zhi, NI Tao, ZHANG Kun, ZHANG Zhen-nan, . A brittle-ductile transition constitutive model based on discrete elastic tensors [J]. Rock and Soil Mechanics, 2019, 40(S1): 181-188.
[3] CUI Xue-jie, YAN E-chuan, CHEN Wu. Cluster analysis of discontinuity occurrence of rock mass based on improved genetic algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 374-380.
[4] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[5] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[6] WANG Shi-quan, WEI Ming-li, HE Xing-xing, ZHANG Ting-ting, XUE Qiang, . Study of water transfer mechanism during sediment solidification process based on nuclear magnetic resonance technology [J]. Rock and Soil Mechanics, 2019, 40(5): 1778-1786.
[7] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[8] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[9] XIE Kai-nan, JIANG De-yi, SUN Zhong-guang, SONG Zhong-qiang, WANG Jing-yi, YANG Tao, JIANG Xiang, . Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(2): 653-659.
[10] ZHANG Feng-rui, JIANG An-nan, JIANG Zong-bin, ZHANG Guang-tao. Experimental study of damage and creep property of rock under coupled chemical corrosion and freeze-thaw cycle [J]. Rock and Soil Mechanics, 2019, 40(10): 3879-3888.
[11] FENG Shang-xin, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, CHEN Xi. Mesostructural change of soil-rock mixtures based on NMR technology [J]. , 2018, 39(8): 2886-2894.
[12] YE Wan-jun, LI Chang-qing, YANG Geng-she, LIU Zhong-xiang, PENG Rui-qi. Scale effects of damage to loess structure under freezing and thawing conditio [J]. , 2018, 39(7): 2336-2343.
[13] WANG Peng, XU Jin-yu, FANG Xin-yu, WANG Pei-xi, LIU Shao-he, WANG Hao-yu,. Water softening and freeze-thaw cycling induced decay of red-sandstone [J]. , 2018, 39(6): 2065-2072.
[14] WANG Guan-shi, XIONG Peng, HU Shi-li, MENG Shi-ming, LONG Ping, TAN Tan,. Application of displacement discontinuity model for calculating the viscoelastic stiffness of joints [J]. , 2018, 39(6): 2175-2183.
[15] MENG Shang-jiu, LI Xiang, SUN Yi-qiang, CHENG You-kun,. In-situ monitoring and analysis of permanent subgrade deformation in seasonally frozen regions [J]. , 2018, 39(4): 1377-1385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[4] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[5] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[6] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[7] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[8] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[9] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[10] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .