›› 2012, Vol. 33 ›› Issue (11): 3479-3482.

• Numerical Analysis • Previous Articles     Next Articles

Study of landslide thrust distribution law of row of piles in reinforced landslide with polygonal line slip surface

XU Jun1,LI An-hong1,XIAO Shi-guo2   

  1. 1. China Railway Eryuan Engineering Group Co. Ltd., Chengdu 610031, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2011-12-20 Online:2012-11-12 Published:2012-11-14

Abstract: During the design of multi-row and embedded anti-slide piles of large landslide, the most important thing which most designers are concerned about is the landslide thrust of each row of piles and the distribution mode along the pile when the row distance or embedded depth is different. It’s difficult to study all kinds of large landslides, so a typical landslide with polygonal line slip surface is studied. And in order to simplify the analysis, it’s assumed that it has specific landslide surface. Based on indoor model test, the general law about landslide thrust of each row of piles with different row distances is obtained. Also by the strength reduction finite elements, the distribution mode of landslide thrust along the pile with different embedded depths is analyzed. The result that the change of row distance or embedded depth is a proper method for optimizing the ratio of each row of piles is presented; and the landslide thrust distribution law of row of piles is a guidance for the civil engineering designers to accomplish more reasonable design of multi-row and embedded anti-slide piles in reinforcing large landslides.

Key words: polygonal line slip surface, landslide thrust, embedded anti-slide piles, model test, numerical analysis

CLC Number: 

  • TU 476
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[3] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[4] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[5] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[6] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[7] ZHU Cai-hui, CUI Chen, LAN Kai-jiang, DONG Yong-qiang. The effects of the degradation of brick-clay structure and demolition of embedded buildings on the stability of Yulin City Wall [J]. Rock and Soil Mechanics, 2019, 40(8): 3153-3166.
[8] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[9] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[10] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[11] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[12] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[13] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[14] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[15] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Ping-lu, CHEN Cong-xin, XIAO Guo-feng, LIN Jian. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. , 2009, 30(10): 3020 -3024 .
[2] LU Meng-meng,XIE Kang-he,WANG Yu-lin,CAI Xin. Analytical solution for nonlinear consolidation of stone column reinforced composite ground[J]. , 2010, 31(6): 1833 -1840 .
[3] SUN Jun,QI Yu-liang. Normal calculation-back analysis of surrounding rock stability of subsee tunnel[J]. , 2010, 31(8): 2353 -2360 .
[4] HOU Xing-min,KONG Ling-zhao,CHEN Jian-li. A subsoil damping ratio testing and data processing method[J]. , 2010, 31(9): 2995 -2999 .
[5] ZHANG Jian-gang, HE Chuan, YANG Zheng. Analysis of 3D internal forces distribution of wide segment lining for large-section shield tunnel[J]. , 2009, 30(7): 2058 -2062 .
[6] XU Ming-jiang,WEI De-min,HE Chun-bao. Axisymmetric steady state dynamic response of layered unsaturated soils[J]. , 2011, 32(4): 1113 -1118 .
[7] CHEN Guo-qing , SU Guo-shao , JIANG Quan , LI Tian-bin. Study of tensile strain criterion of high sidewall in large underground caverns[J]. , 2011, 32(S1): 603 -0608 .
[8] WEN Hai-jia, ZHANG Yong-xing, CHEN Yun. Slope risk assessment based on a 3D geo-information model[J]. , 2009, 30(S2): 367 -370 .
[9] PENG Lin-jun , ZHAO Xiao-dong , LI Shu-cai. Simulating research on rules of surface subsidence due to deep mining[J]. , 2011, 32(6): 1910 -1914 .
[10] YANG Zhi-quan1, 2, 3,HOU Ke-peng4,GUO Ting-ting4,MA Qiu5. Study of column-hemispherical penetration grouting mechanism based on Bingham fluid of time-dependent behavior of viscosity[J]. , 2011, 32(9): 2697 -2703 .