›› 2013, Vol. 34 ›› Issue (1): 101-108.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of deformation characteristics of coarse-grained soil under plane strain condition

SHI Wei-cheng1, 2, 3,ZHU Jun-gao3,ZHANG Kun-yong3,YU Ting4   

  1. 1. Changzhou Key Laboratory of Structure Engineering and Material Properties, Changzhou Institute of Technology, Changzhou, Jiangsu 213002, China; 2. Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; 3. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 4. Chengdu Hydroelectric Investigation and Design Institute, Chengdu 610072, China
  • Received:2011-10-07 Online:2013-01-10 Published:2013-01-10

Abstract: Plane strain and conventional triaxial compression tests are performed on coarse-grained soil by the TSW-40 type true triaxial apparatus in Hohai University. The stress-strain relations and relationships between different strains of coarse-grained soil in plane strain condition are studied, including the relations between principal stress difference ? 1-? 3(or ? 2-? 3) and maximum principal strain ?1, principal stress ratio ? 1 /? 3(or ? 2 /? 3) and maximum principal strain ?1, spherical stress p and volumetric strain ?v, deviator stress q and deviator strain ? s, generalized stress ratio q/p and generalized shear strain ?s, maximum principal strain ?3 and maximum principal strain ?1, volumetric strain ? v and generalized shear strain ? s. The experimental results show that with the same ? 3, the ? 1-? 3 (or ? 1/? 3) curves in plane strain tests lie above those in conventional triaxial tests; the ? 1-? 3(or ? 2-? 3) curves with larger σ3 lie above those with smaller ? 3, while the ? 1/? 3(or ? 2 /? 3) curves with larger ? 3 lie below those with smaller ? 3; at the same σ3 and ? 1, the expansion in the direction of minor principal stress in plane strain condition is larger than that in conventional triaxial condition; at the same ? s, the larger the ? 3 is, the larger the ? v would be, and the volumetric strain ? v in plane strain condition would be larger than that in conventional triaxial compression condition at the same ? 3. There is a uniform hyperbolic stress-strain relationship in both plane strain and conventional triaxial compression conditions. It is proved that it is necessary to consider the anisotropy of elastic modulus E and Poisson’s ratio ? in the calculation of plane strain problems of coarse-grained soil by nonlinear elastic models.

Key words: plane strain, coarse-grained soil, stress-strain, elastic modulus, anisotropy

CLC Number: 

  • TU 411
[1] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[2] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[3] WU Er-lu, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Experimental study of compaction characteristics of coarse-grained soil based on gradation equation [J]. Rock and Soil Mechanics, 2020, 41(1): 214-220.
[4] KE Wen-hai, GUAN Ling-xiao, LIU Dong-hai, DENG Jian-lin, LI Ke, XU Chang-jie, . Research on upper pipeline-soil interaction induced by shield tunnelling [J]. Rock and Soil Mechanics, 2020, 41(1): 221-228.
[5] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[6] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[7] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[8] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[9] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[10] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[11] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[12] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[13] DING Jian-yuan, CHEN Xiao-bin, ZHANG Jia-sheng, LIU Yi-yin, XIAO Yuan-jie, . Predicting model for coarse-grained soil particle breakage process using logarithmic probability regression mathematic method [J]. Rock and Soil Mechanics, 2019, 40(4): 1465-1473.
[14] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Stress-strain behavior of expansive soil under K0 condition with different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(4): 1299-1306.
[15] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[4] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[5] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[6] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[7] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[8] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[9] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[10] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .