›› 2013, Vol. 34 ›› Issue (3): 811-817.

• Geotechnical Engineering • Previous Articles     Next Articles

Study of reliability for loess high slopes in Gansu area

LI Ping,HUANG Li-juan,LI Zhen-jiang,LI Xin-sheng,LI Tong-lu   

  1. Department of Geological Engineering, Chang’an University, Xi’an 710054, China
  • Received:2012-03-19 Online:2013-03-11 Published:2013-03-20

Abstract: In order to analyze reliability of loess high slopes, 266 natural ultimate state slopes are measured in Gansu area. According to the characteristics of topography and lithology, the studied region is divided into 4 subareas. The correlations of ultimate state slope height and width are given by means of double log-linear regression in different confidences for the 4 subareas respectively. Meanwhile, 1 024 groups of physico-mechanical indices obtained from reports are statistically analyzed. Based on the above, the ultimate state equation is built by means of Bishop's method. Reliability analysis for slopes under different confidences in 4 subareas is carried out with the Monte Carlo method. The effects of slope height, slope ratio and variability of parameters on the probability of failure are systematically analyzed. The results show that the slope ratio in Lintao-Yongjing subarea is smaller than 31.5? if the probability of failure(Pf) is kept within 10%. In the condition of the average coefficient of variation in Longdong subarea, Qin’an Lanzhou-Dingxi-Huining subarea and Tianshui-Qin’an-Tongwei subarea, the maximum of Pf of loess slopes is less than 10% with safety factor(Fs) of 1.3, as well as Pf less than 20% with Fs =1.2.

Key words: loess slope, Monte Carlo method, reliability, failure probability, ultimate state slopes

CLC Number: 

  • TU 444
[1] WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, TANG Zhao-guang, WANG Hai, DUAN Xue-feng. Reliability analysis of acceleration integral displacement method based on shaking table tests [J]. Rock and Soil Mechanics, 2019, 40(S1): 565-573.
[2] FENG Jun, WANG Yang, WU Hong-gang, LAI Bing, XIE Xian-dang, . Field pullout tests of basalt fiber-reinforced polymer ground anchor [J]. Rock and Soil Mechanics, 2019, 40(7): 2563-2573.
[3] HUANG Sheng-gen, SHEN Jia-hong, LI Meng, . Reliability analysis of bearing capacity of post-grouted bored piles [J]. Rock and Soil Mechanics, 2019, 40(5): 1977-1982.
[4] XIAHOU Yun-shan, ZHANG Shu, TANG Hui-ming, LIU Xiao, WU Qiong, . Study of structural cross-constraint random field simulation method considering spatial variation structure of parameters [J]. Rock and Soil Mechanics, 2019, 40(12): 4935-4945.
[5] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
[6] ZHAO Mi, ZHANG Shao-hua, ZHONG Zi-lan, HOU Ben-wei, DU Xiu-li. Robust geotechnical design of spread foundations [J]. Rock and Soil Mechanics, 2019, 40(11): 4506-4514.
[7] LI Dian-qing, ZHOU Qiang, CAO Zi-jun, . Safety criteria for geotechnical design based on generalized reliability ratio of safety margin [J]. Rock and Soil Mechanics, 2019, 40(10): 3977-3986.
[8] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
[9] JIANG Shui-hua, LIU Xian, YAO Chi, YANG Jian-hua, HUANG Jin-song, JIANG Xian-he,. System reliability analysis of rock slopes at low probability levels [J]. , 2018, 39(8): 2991-3000.
[10] GUO Chong-yang, LI Dian-qing, CAO Zi-jun, GAO Guo-hui, TANG Xiao-song. Efficient reliability sensitivity analysis for slope stability in spatially variable soils [J]. , 2018, 39(6): 2203-2210.
[11] ZHANG Xiao-yan, ZHANG Li-xiang, LI Ze,. Reliability analysis of soil slope based on upper bound method of limit analysis [J]. , 2018, 39(5): 1840-1849.
[12] FAN Wen-liang, WANG Yu-le, WEI Qi-ke, YANG Peng-chao, LI Zheng-liang, . Improved fourth-moment method for reliability analysis of geotechnical engineering [J]. , 2018, 39(4): 1463-1468.
[13] CHEN Wang-wang, LI Dian-qing, TANG Xiao-song, CAO Zi-jun, . Probability distribution of shear strength parameters using maximum entropy principle for slope reliability analysis [J]. , 2018, 39(4): 1469-1478.
[14] YANG Zhi-yong, LI Dian-qing, CAO Zi-jun, TANG Xiao-song, . System reliability of soil slope using generalized subset simulation [J]. , 2018, 39(3): 957-966.
[15] LI Shu-cai, HE Peng, LI Li-ping, ZHANG Qian-qing, SHI Shao-shuai, XU Fei, LIU Hong-liang. Reliability analysis method of sub-classification of tunnel rock mass and its engineering application [J]. , 2018, 39(3): 967-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[9] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .
[10] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .