›› 2003, Vol. 24 ›› Issue (5): 691-695.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on reconsolidation characteristics of saturated soils

BAI Bing   

  1. College of Civil Engineering,Northern Jiaotong University,Beijing 100044,China
  • Received:2002-04-05 Online:2003-10-10 Published:2014-08-19

Abstract: The effects of some factors, such as impact loading magnitudes, confining pressure and the types of soils on reconsolidation deformation are studied under impact loading. Particularly, the reconsolidation deformation characteristics of a kind of sand-clay mixture sample are discussed according to laboratory test results; and are compared with the saturated soft clay samples. Besides, the disturbance consolidation, the limit pore water pressure, the effect of test conditions on test results, etc. are also discussed. Based on the test results, the problems of secondary consolidation deformation under various drainage conditions are analyzed. These studies have a great significance to dynamic consolidation method for the reinforcement of saturated soft clay foundation.

Key words: saturated soil, reconsolidation, affecting factor, impact loading

CLC Number: 

  • TU411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHOU Feng-xi, GAO Guo-yao, . Steady-state analysis of the heat-moisture-salt coupling for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2050-2058.
[2] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[3] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[4] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[5] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[6] FANG Jin-jin, FENG Yi-xin, ZHAO Wei-long, WANG Li-ping, YU Yong-qiong, . Nonlinear constitutive model for intact loess in true tri-axial tests [J]. Rock and Soil Mechanics, 2019, 40(2): 517-528.
[7] CHEN Zheng-han, GUO Nan, . New developments of mechanics and application for unsaturated soils and special soils [J]. Rock and Soil Mechanics, 2019, 40(1): 1-54.
[8] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[9] LI Xuan, SUN De-an, ZHANG Jun-ran,. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. , 2018, 39(8): 2829-2836.
[10] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[11] XU Xiao, ZHAO Cheng-gang, CAI Guo-qing,. Shear strength of unsaturated soils considering capillary and adsorptive mechanisms [J]. , 2018, 39(6): 2059-2064.
[12] LU Jian-fei, ZHOU Hui-ming, LIU Yang. Reflection-transmission matrix method for dynamic response of transversely isotropic multilayered saturated soil [J]. , 2018, 39(6): 2219-2226.
[13] ZHOU Ya-dong, DENG An, LU Qun, . A one-dimensional consolidation model considering large strain for unsaturated soil [J]. , 2018, 39(5): 1675-1682.
[14] FANG Jin-jin, FENG Yi-xin, ZHU Chang-xing,. Mechanical characteristics of Q3 intact loess in true triaxial tests [J]. , 2018, 39(5): 1699-1708.
[15] LIU Lin-chao, XIAO Qi-dan, YAN Qi-fang. Vertical vibration of a single pipe pile in saturated soil with 3D wave model [J]. , 2018, 39(5): 1720-1730.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GAO Qian, WANG Jing, YANG Zhi-fa, ZHANG Lu-qing, ZHU Jie-wang, ZHENG Jian. Stability analysis of the large ancient underground rock caverns in Longyou and the selection of maximum-security routes in the caverns[J]. , 2009, 30(9): 2713 -2721 .
[2] QIU Min-yu,YU Ya-nan. Analysis of influence depth for roads induced by vehicle load[J]. , 2010, 31(6): 1822 -1826 .
[3] LIU Wen-lian, WEI Li-de. Study of calculation model of anchors in strength reduction FEM[J]. , 2010, 31(12): 4021 -4026 .
[4] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[5] QI Jing-jing,XU Ri-qing,WEI Gang. Research on calculation method of soil 3D displacement due to shield tunnel construction[J]. , 2009, 30(8): 2442 -2446 .
[6] ZHOU Yi, LI Shu-cai, LI Li-ping, ZHAO Yan, LIU Qin, YUAN Xiao-shuai. Study of influence of formation conditions on construction process rules of ultralarge section and weak broken wall rock tunnel by numerical simulation[J]. , 2011, 32(S2): 673 -678 .
[7] YANG Feng-xue ,ZHANG Xi-fa ,LENG Yi-fei ,ZHAO Yi-min. Empirical method for determining thawing volume compression coefficient of frozen soil[J]. , 2011, 32(11): 3432 -3436 .
[8] LIU Zhen-ping,HE Huai-jian,BAI Shi-wei,ZHANG Hua,ZOU Dan,LI Huo-bing. Field test and numerical simulation of pile-slab foundation of 500 kV transmission line tower in silt[J]. , 2012, 33(4): 1031 -1039 .
[9] MIAO Yu , Lü Jia-he , ZHANG Qing-jun , JIN Xiang-yue , LUO Hui . Cracking mechanism and propagation analysis of asphalt pavement with multi-crack[J]. , 2012, 33(5): 1513 -1518 .
[10] FEI Kang ,WANG Jun-jun ,CHEN Yi . A simplified method for analyzing soil arching effect in pile-supported embankments[J]. , 2012, 33(8): 2408 -2414 .