›› 2013, Vol. 34 ›› Issue (4): 974-980.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of cumulative axial strain and residual dynamic modulus of silt soil

BIAN Xue-cheng1, 2, LU Wen-bo1, 2, JIANG Hong-guang1, 2 CHEN Yun-min1, 2   

  1. 1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China; 2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2012-02-13 Online:2013-04-10 Published:2013-04-16

Abstract: Traffic loading from trains or vehicles will cause damages in transportation infrastructure constructed on silt soil, and consequently result in reduction of transportation infrastructure’s availability. In order to investigate cumulative deformation and dynamic behaviors of silt soil under large cycles of traffic loading, a series of dynamic triaxial tests have been conducted on Qiantang River silt soil. Effect of soil’s physical properties, such as relative compaction(RC), water content and loading features, and loading frequency, confining pressure and cyclic stress ratio(CSR) on soil’s axial strain, dynamic modulus, damping ratio have been discussed based on the test data. The results show that the critical cyclic stress ratio(CSR) of Qiantang River silt soil is about 0.11. When the applied dynamic stress is below the critical dynamic stress, silt soil’s dynamic modulus shows very little reduction; and the cumulative axial strain is very small. When dynamic stress exceeds the critical dynamic stress, soil’s dynamic modulus reduces quickly, and the residual dynamic modulus can reach about 20% of the initial elastic modulus. Meanwhile, the dynamic modulus and damping ratio change significantly with the axial strain. The test data on silt soil’s dynamic modulus and damping ratio show a uniform conclusion after normalization on the data. Silt soil’s dynamic modulus almost keeps constant when the axial strain (or the normalized cycle number) is less than a threshold value, and decreases exponentially when beyond it and reaches a stable value ultimately. The damping ratio develops exponentially with the axial strain (or the normalized cyclic number).

Key words: silt soil, cyclic loading, cumulative deformation, dynamic modulus, damping ratio

CLC Number: 

  • TU 411.8
[1] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[2] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[3] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[4] RUI Sheng-jie, GUO Zhen, WANG Li-zhong, ZHOU Wen-jie, LI Yu-jie, . Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface [J]. Rock and Soil Mechanics, 2020, 41(1): 78-86.
[5] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[6] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
[7] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[8] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[9] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[10] DONG Jian-xun, LIU Hai-xiao, LI Zhou. A bounding surface plasticity model of sand for cyclic loading analysis [J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
[11] YANG Xiao-bin, CHENG Hong-ming, LÜ Jia-qi, HOU Xin, NIE Chao-gang, . Energy consumption ratio evolution law of sandstones under triaxial cyclic loading [J]. Rock and Soil Mechanics, 2019, 40(10): 3751-3757.
[12] GAO Yuan, LIU Hai-xiao, LI Zhou. An explicit integration algorithm of the bounding-surface plasticity model for saturated sand under cyclic loading [J]. Rock and Soil Mechanics, 2019, 40(10): 3951-3958.
[13] LIU Bin, XU Hong-fa, DONG Lu, , MA Yu-qing, , LI Ke-liang, . A nonlinear rheological model of rock salt based on DS-dashpot under cyclic loading [J]. Rock and Soil Mechanics, 2018, 39(S2): 107-114.
[14] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[15] SHI Gang, LIU Zhong-yu, LI Yong-hui. One-dimensional rheological consolidation of soft clay under cyclic loadings considering non-Darcy flow [J]. , 2018, 39(S1): 521-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] WEI Gang,GUO Zhi-we,WEI Xin-jiang,CHEN Wei-jun. Analysis of coupled seepage and stress of shield tunnel launching accident in soft clay[J]. , 2010, 31(S1): 383 -387 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[8] LIU Han-long, WANG Xin-quan, CHEN Yong-hui, LU Jian-hua. Field experimental study of mechanical performance of Y-shaped vibro-pile reinforced embankments[J]. , 2009, 30(2): 297 -304 .
[9] HOU Gong-yu,NIU Xiao-song. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. , 2009, 30(6): 1555 -1562 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .