›› 2003, Vol. 24 ›› Issue (2): 277-280.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Statistical analysis method of taking value for shear strength parameters of soil mass

LIN Lu-sheng1,2 , JIANG Gang3 , BEI Shi-wei1 , LIU Zu-de4   

  1. 1. Institute of Rock and Soil Mechanics,Chinese Academy of Sciences, Wuhan 470071, China; 2. The East River—Shenzhen Water Supply Reconstructing Project Headquarters, Guangdong 523710, China; 3. College of Civil Engineerin, Nanjing University of Technology, Nanjing 210009, China; 4. Wuhan University, Wuhan 470072, China
  • Received:2002-03-05 Online:2003-02-10 Published:2014-08-19

Abstract: The method of taking value for the strength parameter of residual soil slope is discussed. Based on the testing data of a real residual soil slope, the characteristic parameters c and φ in the different position of slope have been analysed statistically. By way of many teams parameter back analysis in the stability analysis of slope, a method of taking value from which the strength parameter has fit to the real state index of the slope, has been put forward.

Key words: residual soil, shear strength, method of taking value

CLC Number: 

  • TU 41
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[2] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[3] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[4] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[5] ZHANG Jing-ke, SHAN Ting-ting, WANG Yu-chao, WANG Nan, FAN Meng, ZHAO Lin-yi, . Mechanical properties of soil-grout interface of anchor system in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(3): 903-912.
[6] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[7] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[8] CHEN Xi, ZENG Ya-wu, SUN Han-qing, REN Shu-lin, LIU Wei. A new peak shear strength model of rock joints [J]. Rock and Soil Mechanics, 2018, 39(S2): 123-130.
[9] ZHANG Lei, LIU Hui, WANG Tie-hang. Shear tests on loess-concrete interface under consolidation and unconsolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 238-244.
[10] CHEN Rui-feng, TIAN Gao-yuan, MI Dong-yun, DONG Xiao-qiang,. Study of basic engineering properties of loess modified by red mud [J]. , 2018, 39(S1): 89-97.
[11] DONG Jin-yu, WANG Chuang, ZHOU Jian-jun, YANG Ji-hong, LI Yan-wei,. Experimental study of foam-improved sandy gravel soil [J]. , 2018, 39(S1): 140-148.
[12] GUO Lin-ping, KONG Ling-wei, XU Chao, YANG Ai-wu,. Preliminary study of quantitative relationships between physical and mechanical indices of granite residual soil in Xiamen [J]. , 2018, 39(S1): 175-180.
[13] XU Nian-chun, WU Tong-qing, PI Hai-yang, YOU Lei, WU Yue,. Inversion of shear strength of soil based on flexible bearing plate loading test [J]. , 2018, 39(S1): 227-234.
[14] CUI Guo-jian, ZHANG Chuan-qing, LIU Li-peng, ZHOU Hui, CHENG Guang-tan,. Study of effect of shear velocity on mechanical characteristics of bolt-grout interface [J]. , 2018, 39(S1): 275-281.
[15] WANG Xin-zhi, WENG Yi-ling, WANG Xing, CHEN Wei-jun, . Interlocking mechanism of calcareous soil [J]. , 2018, 39(9): 3113-3120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[7] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[8] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[9] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .