›› 2013, Vol. 34 ›› Issue (7): 1931-1936.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on regional microstructure characteristics of structural clay of Zhanjiang formation

SHEN Jian-hua1,WANG Ren1,ZHENG Yun1,HAN Jian-zhuang2,CHEN Xiao-dong2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071,China; 2. Guangdong Zhanjiang Geo-Engineering Investigation Institute, Zhanjiang, Guangdong 524043, China
  • Received:2012-06-13 Online:2013-07-10 Published:2013-07-15

Abstract: Zhanjiang formation formed in early Pleistocene is widely distributed in Leizhou peninsula in China. The most typical gray clay of Zhanjiang formation is known as its strong structural performance and had produced a series of geotechnical engineering problems in actual engineering. According to the stratigraphic research, this typical gray clay of Zhanjiang formation has different sedimentary environments and compositions in different areas of Leizhou peninsula. Thus, the differences of geologic origin make the engineering properties of gray clay changing with the area. In the actual projects, it is difficult for engineers and researchers to master the engineering mechanics effect of gray clay due to its regional characteristics. Some tests by X-ray diffraction and scanning electron microscope (SEM) are carried out to study the microstructure characteristics of gray clay such as mineral composition and its content, and microstructure in different areas. The results show that there are differences of mineral composition and its content. Different proportions of mineral composition compose different microstructures of gray clay which have obviously regional characteristics. The revelations of micromechanism of gray clay which lead to its strong structural performance and the analysis of its regional characteristics make for cognition and use of this clay.

Key words: Zhanjiang formation, structural clay, strong structural performance, microstructure, regional characteristics

CLC Number: 

  • TU 442
[1] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[2] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[3] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[4] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[5] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[6] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[7] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[8] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[9] LI Ming-yu, SUN Wen-jing. Water retention behaviour of biochar-amended clay and its influencing mechanism [J]. Rock and Soil Mechanics, 2019, 40(12): 4722-4730.
[10] FEI Suo-zhu, TAN Xiao-hui, SUN Zhi-hao, DU Lin-feng. Analysis of autocorrelation distance of soil based on microstructure simulation [J]. Rock and Soil Mechanics, 2019, 40(12): 4751-4758.
[11] LIANG Wei-yun, WEI Chang-fu, YAN Rong-tao, YANG De-huan. Microstructure and compression characteristics of NaCl solutions saturated expansive soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4759-4766.
[12] WANG Dong-wei, LU Wu-ping, TANG Chao-sheng, ZHAO Hong-wei, LI Sheng-jie, LIN Luan, LENG Ting, . Sample preparation technique and microstructure quantification method for sandy soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4783-4792.
[13] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, LI Biao, ZHOU Yong-qiang, . Swelling and shrinkage characteristics study of Lushi expansive rock under dry and wet circulation [J]. Rock and Soil Mechanics, 2019, 40(11): 4279-4288.
[14] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Experimental study on aging effect on bentonite thermal conductivity [J]. Rock and Soil Mechanics, 2019, 40(11): 4324-4330.
[15] DENG Hua-feng, WANG Chen-xi-jie, LI Jian-lin, ZHANG Yin-chai, WANG Wei, ZHANG Heng-bin. Influence mechanism of loading rate on tensile strength of sandstone [J]. , 2018, 39(S1): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[4] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[5] JIANG Xue-liang ,YANG Hui ,CAO Ping. FLAC3D analysis of interaction between goaf and opencut mining slope with 3D geological model using SURPAC[J]. , 2011, 32(4): 1234 -1240 .
[6] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[7] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[8] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[9] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .