›› 2008, Vol. 29 ›› Issue (5): 1164-1168.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on orthotropic shear yield criterion and its numerical implementation

XU Wei-ya1, 2, ZHANG Gui-ke1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China ; 2. Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China
  • Received:2006-07-06 Online:2008-05-10 Published:2013-07-24

Abstract: The theory and methods of anisotropic shear yield criterion is studied on the basis of isotropic Mohr-Coulomb yield criterion. The above theory and methods are applied to establish orthotropic shear yield criterion and to analyze the way to introduce it into the numerical analysis. In order to introduce the orthotropic shear yield criterion into FLAC3D, the codes are developed by using the FISH language of FLAC3D. Theoretical analysis and numerical analysis indicate that the orthotropic shear yield criterion is related to 3 principal stresses and the isotropic shear yield criterion is a special case of the orthotropic shear yield criterion. The analysis also shows that the maximum shear stress plane can not be the same of yield plane in orthotropic materials.

Key words: orthogonal anisotropy, shear yield criterion, Mohr-Coulomb yield criterion, numerical analysis

CLC Number: 

  • TB 115
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[2] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[3] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[4] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[5] ABI ERDI, ZHENG Ying-ren, FENG Xia-ting, CONG Yu. Relationship between particle micro and macro mechanical parameters of parallel-bond model [J]. , 2018, 39(4): 1289-1301.
[6] LI Yi-fan, DONG Shi-ming, PAN Xin, LI Nian-bin, YUAN Ye. Experimental study of mixed-mode I/III fracture of sandstone [J]. , 2018, 39(11): 4063-4070.
[7] LIU Tian-xiang, WANG Zhong-fu, . Analysis of interaction when tunnel orthogonal crossing deep-seated landslide and the corresponding control measures [J]. , 2018, 39(1): 265-274.
[8] SONG Xu-gen, CHEN Cong-xin, XIA Kai-zong, CHEN Long-long, FU Hua,. Research on deformation mechanism and feasibility of continuous use of mine shaft [J]. , 2017, 38(S1): 331-342.
[9] LIU Yang, YANG Gang, WANG Jun-xiang, JIANG An-nan,. Mohr-Coulomb elastoplastic damage constitutive model of rock and implicit return mapping algorithm in principal stress space [J]. , 2017, 38(S1): 418-428.
[10] MA Shao-kun, SHAO Yu, LIU Ying, FENG Ye, WEI Chao-hua,. Effects of construction sequences of twin tunneling at different depths on the adjacent pipeline [J]. , 2017, 38(9): 2487-2495.
[11] LI Xue-feng, HE Yu-qi, LIU Jin-feng , HE Wei-gang,. Quantitative analysis of amplitude parameters for orthotropic fabric sand [J]. , 2017, 38(12): 3619-3626.
[12] ZHENG Jun-jie, GUO Zhen-shan, CUI Lan, ZHANG Jun,. Stability analysis of expansive soil tunnel considering unsaturated seepage and moistening swelling deformation [J]. , 2017, 38(11): 3271-3277.
[13] LI Yi-fan, DONG Shi-ming, LI Nian-bin. A method of calculating T-stress for cracked flattened Brazilian disk under combined mode loading condition [J]. , 2016, 37(S1): 645-650.
[14] QIU Ming-ming , YANG Xiao , YANG Guo-lin , FANG Yi-he,. Dynamic response of the new fully-enclosed cutting subgrade of Yun-Gui high-speed railway [J]. , 2016, 37(2): 537-544.
[15] WANG Su-ling, SUI Xu, ZHU Yong-chao,. Effect of set surface perforating technology on hydraulic crack extension [J]. , 2016, 37(12): 3393-3400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] LIU Jie, HE Jie, MIN Chang-qing. Contrast research of bearing behavior for composite foundation with tapered piles and cylindrical piles[J]. , 2010, 31(7): 2202 -2206 .
[5] LU Li, ZHANG Si-ping, ZHANG Yong-xing, HU Dai-wen, WU Shu-guang. Field pull-out test and behavior analysis of compression type rock anchor cables[J]. , 2010, 31(8): 2435 -2440 .
[6] ZHANG Jian-min,WANG Fu-qiang. Post-liquefaction flow failure of saturated dilative sands and its mechanism[J]. , 2010, 31(9): 2711 -2715 .
[7] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[8] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[9] WANG Guan-shi,LI Chang-hong,HU Shi-li,FENG Chun,LI Shi-hai. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. , 2010, 31(11): 3487 -3492 .
[10] LIU Wen-bai,ZHOU Jian. Experimental research on interface friction of geogrids and soil[J]. , 2009, 30(4): 965 -970 .