›› 2008, Vol. 29 ›› Issue (5): 1425-1429.

• Geotechnical Engineering • Previous Articles     Next Articles

Study on stability and reinforcement measures of an unstable rock masses of Xiluodu Hydropower station

HUANG Da1, HUANG Run-qiu2, PEI Xiang-jun2, LIU Wei-hua2   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. State Key Laboratory of Geological Hazard Prevention and Geoenvirronment Protection, Chengdu University of Technology, Chengdu 610059, China
  • Received:2006-04-14 Online:2008-05-10 Published:2013-07-24

Abstract: Based on investigation on spot and geological analysis, an unstable rock masses of Xiloudu Hydropower Station may to be failure through two modes: shear-falling and rip-topple is proposed; and a mechanical model for calculation of stability by limit equilibrium theory is established; and the unstable rock masses deformation and failure characteristics are analyzed by numerical simulation. The results show: stability of the unstable rock masses is relatively bad if the failure mode is rip- topple , but is good if shear-falling. Based on stability analysis, the anchor reinforcement force is calculated as 12 306 kN when safety factor is 1.5 and the failure is rip-topple; and some reinforcement measures of the unstable rock masses are put for ward follows: fill hollow of rock and fill in cracks and prestressed anchor cables and anchor bolts combination reinforcement. The results of numerical simulation show that: effect of the reinforcement measures is better.

Key words: unstable rock masses, limit equilibrium theory, stability, numerical simulation, reinforcement

CLC Number: 

  • TU 457
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[2] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[3] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[4] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[5] LI Chi, WANG Shuo, WANG Yan-xing, GAO Yu, BAI Siriguleng, . Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298.
[6] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[7] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
[8] ZHANG Cong, LIANG Jing-wei, YANG Jun-sheng, CAO Lei, XIE Yi-peng, ZHANG Gui-jin, . Research on the diffusion mechanism and application of pulsate grouting in embankment and dam [J]. Rock and Soil Mechanics, 2019, 40(4): 1507-1514.
[9] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[10] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[11] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[12] WU Meng-xi, GAO Gui-yun, YANG Jia-xiu, ZHAN Zheng-gang, . A method of predicting critical gradient for piping of sand and gravel soils [J]. Rock and Soil Mechanics, 2019, 40(3): 861-870.
[13] LANG Ying-xian, LIANG Zheng-zhao, DUAN Dong, CAO Zhi-lin, . Three-dimensional parallel numerical simulation of porous rocks based on CT technology and digital image processing [J]. Rock and Soil Mechanics, 2019, 40(3): 1204-1212.
[14] YANG Ai-wu, PAN Ya-xuan, CAO Yu, SHANG Ying-jie, WU Ke-long, . Laboratory experiment and numerical simulation of soft dredger fill with low vacuum pre-compression [J]. Rock and Soil Mechanics, 2019, 40(2): 539-548.
[15] LIU Fang-cheng, WU Meng-tao, YANG Jun, . Experimental study of strength characteristics of geogrid reinforced rubber sand mixtures [J]. Rock and Soil Mechanics, 2019, 40(2): 580-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[10] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .