›› 2008, Vol. 29 ›› Issue (8): 2016-2024.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Method for obtaining local stress field based on interpolation and numerical simulation method

ZHANG Chuan-qing1, ZHOU Hui1, FENG Xia-ting1, ZHANG Zhen-hua1, 2, DONG Shao-yao3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Key Lab. of Geological Hazards on Three Gorges Reservoir of Ministry of Education, China Three Gorges University, Yichang 443002, China; 3. Kunming Investigation and Design Institute, China Hydropower Engineering Consulting Co., Kunming 650051, China
  • Received:2007-09-05 Online:2008-08-11 Published:2013-08-02

Abstract: It is a basic problem that obtainment of the local stress field from the large stress field. The usual methods consist of two steps including interpolation of stress field or boundary conditions and calculation of the local stress field once again. But the previous methods are too complex, high calculation cost or special for a class of problems to being applied. From the engineering angle of view, it is unessential for the high degree of accuracy as to stress field interpolation affected by the complicated geology construction. So, the improved IDW (inverse distance to a power) method which considers the volume effect is presented aiming to the above problems. Based on this method, the obtainment methods of local stress field, in which two kinds of boundary conditions are proposed, are presented for solving the corresponding plane problems, 3-D ground problems and 3-D underground problems. Their rationalities are verified through the settlement of several cases. Finally, the methods are applied to the stability analysis of high rock slope in Nuozhadu Hydropower Project. The results indicate that the improved IDW method is simple and practical; the corresponding solving methods for local stress field are efficient and of satisfied accuracy.

Key words: in situ stress, IDW(inverse distance to a power), boundary condition, local stress field, slope, tunnel

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
[2] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[3] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[4] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[5] WANG Da-hai, HE Shao-hui, LIU Xia-bing, ZHANG Jia-wen, YAO Wen-bo. Studies of the progressive ground arching on the loosening pressure above shallow tunnels [J]. Rock and Soil Mechanics, 2019, 40(6): 2311-2322.
[6] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
[7] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
[8] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[9] XIA Cai-chu, LIU Yu-peng, WU Fu-bao, XU Chen, DENG Yun-gang, . Viscoelasto-viscoplastic solutions for circular tunnel based on Nishihara model [J]. Rock and Soil Mechanics, 2019, 40(5): 1638-1648.
[10] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
[11] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[12] YU Zheng, YANG Long-cai, ZHANG Yong, ZHAO Wei, . Uncertainty analysis of tunnel surrounding rock deformation considering consistency of geological heterogeneity features [J]. Rock and Soil Mechanics, 2019, 40(5): 1947-1956.
[13] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[14] LIU Han-xiang, XU Qiang, ZHU Xing, ZHOU Xiao-peng, LIU Wen-de. Marginal spectrum characteristics of the rock slope with a soft interlayer during an earthquake [J]. Rock and Soil Mechanics, 2019, 40(4): 1387-1396.
[15] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GUAN Yun-fei,GAO Feng,ZHAO Wei-bing,YU Jin. Secondary development of modified Cambridge model in ANSYS software[J]. , 2010, 31(3): 976 -980 .
[2] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[3] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[4] XIAO Lin, YANG Cheng-kui, HU Zeng-hui, LI Xiao-zhao, LI Mo. Model test on temperature distribution in metro tunnel surrounding rock and inverse calculation of its thermal conductivity[J]. , 2010, 31(S2): 86 -91 .
[5] YAO Hua-yan, FENG Xia-ting, CUI Qiang, SHEN Lin-fang, ZHOU Hui, CHENG Chang. Experimental study of effect of chemical corrosion on strength and deformation of hard brittle limestone[J]. , 2009, 30(2): 338 -344 .
[6] PAN Yue, ZHANG Yong, WANG Zhi-qiang. Catastrophe theoretical analysis of disintegrated outburst of a single coal shell in coal-gas outburst[J]. , 2009, 30(3): 595 -602 .
[7] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
[8] YANG Yong-xiang , ZHOU Jian , JIA Min-cai , HU Jin-hu. Visualization testing on liquefaction properties of saturated sands[J]. , 2011, 32(6): 1643 -1648 .
[9] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
[10] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .