›› 2007, Vol. 28 ›› Issue (1): 102-106.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Numerical analysis and treatment of a collapsed middle drift for shallow multi-arch tunnel under unsymmetrical pressure

LI Zhi-yong1, 2, YAN Li1, YANG Jun-sheng1   

  1. 1. School of Civil and Architectural Engineering, Central South University, Changsha 410075. China; 2. Hunan Institute of Communications and Transport, Changsha 410007, China
  • Received:2005-03-16 Online:2007-01-10 Published:2013-08-28

Abstract: During construction of the middle drift of a multi-arch tunnel, collapse accident occurred. According to the field geological and construction conditions, the numerical model is set up; and the commercial software FLAC is adopted to simulate the behaviors of the tunnel and surrounding rock. Based on the results of plastic zones in surround rocks, deformations in rock and lining, and the inner forces within rock bolts and reinforced concrete lining, the deformation of the tunnel and the causes of tunnel collapse are analyzed. The corresponding effective remedy measures are proposed; and good results are achieved.

Key words: multi-arch tunnel, shallow tunnel, unsymmetrical pressure, collapse, numerical analysis

CLC Number: 

  • U 45
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Da-hai, HE Shao-hui, LIU Xia-bing, ZHANG Jia-wen, YAO Wen-bo. Studies of the progressive ground arching on the loosening pressure above shallow tunnels [J]. Rock and Soil Mechanics, 2019, 40(6): 2311-2322.
[2] WANG Tie-hang, JIN Xin, LUO Yang, ZHANG Song-lin. A method for evaluation of loess collapse potential of unloading [J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290.
[3] ZHONG Guo-qiang, WANG Hao, KONG Li, WANG Cheng-tang, . Evaluation of the possibility of foundation pit collapse with " diaphragm wall+ support" based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(4): 1569-1576.
[4] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[5] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[6] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, ZHENG Xian-wei, . Cause analysis of surface collapse in western area of Chengchao iron mine [J]. Rock and Soil Mechanics, 2019, 40(2): 743-758.
[7] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[8] CHEN Fu-quan, LAI Feng-wen, LI Da-yong. State of the art in research of geosynthetic-reinforced embankment overlying voids [J]. , 2018, 39(9): 3362-3376.
[9] HU Jie, LI Shu-cai, SHI Shao-shuai, LI Li-ping, LIU Jin-pei, LIU Hong-liang, HE Peng. Model test study of rockfall impacts on tunnel heading slope and discussion of related mechanisms [J]. , 2018, 39(7): 2527-2536.
[10] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[11] ABI ERDI, ZHENG Ying-ren, FENG Xia-ting, CONG Yu. Relationship between particle micro and macro mechanical parameters of parallel-bond model [J]. , 2018, 39(4): 1289-1301.
[12] LI Jian-peng, NIE Qing-ke, LIU Quan-sheng, YU Jun-chao,. Risk assessment method of karst ground collapse based on weight back analysis [J]. , 2018, 39(4): 1395-1400.
[13] LI Hao, BAI Hai-bo, WU Jian-jun, LI Zhi-yong, MENG Qing-bin, GUO Jun-qing, ZHU De-fu, XIAO Meng, . D-P stochastic damage constitutive model and its application in preventing water inrush of karst collapsed column [J]. Rock and Soil Mechanics, 2018, 39(12): 4577-4587.
[14] LI Yi-fan, DONG Shi-ming, PAN Xin, LI Nian-bin, YUAN Ye. Experimental study of mixed-mode I/III fracture of sandstone [J]. , 2018, 39(11): 4063-4070.
[15] LIU Tian-xiang, WANG Zhong-fu, . Analysis of interaction when tunnel orthogonal crossing deep-seated landslide and the corresponding control measures [J]. , 2018, 39(1): 265-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Kai-sheng,SHA Ai-min. Research on resilient modulus test of compacted loess[J]. , 2010, 31(3): 748 -752 .
[2] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[3] WU Huo-zhen, FENG Mei-guo, JIAO Yu-yong, LI Hai-bo. Analysis of sliding mechanism of accumulation horizon landslide under rainfall condition[J]. , 2010, 31(S1): 324 -329 .
[4] HE Si-ming, WU Yong, LI Xin-po. Research on mechanism of uplift rock-socketed piles[J]. , 2009, 30(2): 333 -337 .
[5] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[6] WEI Hou-zhen, YAN Rong-tao, CHEN Pan, TIAN Hui-hui, WU Er-lin, WEI Chang-fu. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. , 2011, 32(S2): 198 -203 .
[7] WU Yi. An equivalent far-field artificial dynamic-boundary condition for one-dimensional problem[J]. , 2011, 32(11): 3508 -3514 .
[8] YE Guan-bao , HE Zhi-yu , GAO Yan-bin , MA Dong-mei , ZHONG Wei-tao. Field test study of load distribution of anchoring section of pressure dispersed anchor cables[J]. , 2011, 32(12): 3561 -3565 .
[9] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[10] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .