›› 2007, Vol. 28 ›› Issue (4): 663-669.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis and calculation of energy release and deviatoric stress energy generation of surrounding rock in tunnel excavation process

PAN Yue, WANG Zhi-qiang, WU Min-ying   

  1. College of Civil Engineering, Qingdao Technological University, Qingdao 266520, China
  • Received:2005-05-25 Online:2007-04-10 Published:2013-09-05

Abstract: Surrounding rock energy is released in company with tunnel excavation; and in the meantime deviatoric stress is brought in surrounding rock. Surrounding rock stress is the superposition of stress in virgin rock mass and deviatoric stress. The deviatoric stress or its strain energy dominates the breakage of rock mass. On condition that the hydrostatic pressure and the volumetric strain of rock mass is equal to zero, by using the stress distribution expressions of surrounding rock which are educed on base of the constitutive model that its elastic and nonlinear softening segment linked glossily in paper [1], and using multiple integral, the strain energy of deviatoric stress, , is calculated in the elastic and softened zones of surrounding rock. It is proved that can be deduced concisely by way of integrating the ground stress with respect to the displacement of tunnel wall , and multiplying by perimeter of tunnel wall, and the principle of the calculation approach of is expatiated. The energy released by surrounding rock in the process of tunnel excavation is equal to the product of perimeter of tunnel wall and the integral of the surrounding rock pressure with respect to . Thereby, the circumstances of deviatoric stress energy and the released elastic energy in surrounding rock in response to can be expressed by the geometrical form that the area enclosed by the curves - and - . The acquired findings can deepen the understanding of mechanical response of surrounding rock owing to tunnel excavation and operating condition of surrounding rock after tunnel excavation.

Key words: tunnel, displacement of tunnel wall, surrounding rock pressure, energy release of surrounding rock, strain energy of deviatoric stress

CLC Number: 

  • TD 322+ .4
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
[2] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[3] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[4] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[5] WANG Da-hai, HE Shao-hui, LIU Xia-bing, ZHANG Jia-wen, YAO Wen-bo. Studies of the progressive ground arching on the loosening pressure above shallow tunnels [J]. Rock and Soil Mechanics, 2019, 40(6): 2311-2322.
[6] XIA Cai-chu, LIU Yu-peng, WU Fu-bao, XU Chen, DENG Yun-gang, . Viscoelasto-viscoplastic solutions for circular tunnel based on Nishihara model [J]. Rock and Soil Mechanics, 2019, 40(5): 1638-1648.
[7] YU Zheng, YANG Long-cai, ZHANG Yong, ZHAO Wei, . Uncertainty analysis of tunnel surrounding rock deformation considering consistency of geological heterogeneity features [J]. Rock and Soil Mechanics, 2019, 40(5): 1947-1956.
[8] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[9] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[10] GAO Cheng-lu, LI Shu-cai, LIN Chun-jin, LI Li-ping, ZHOU Zong-qing, LIU Cong, SUN Shang-qu, . Development and application of model test system for water leakage disease in tunnel lining [J]. Rock and Soil Mechanics, 2019, 40(4): 1614-1622.
[11] SUN Guang-chen, XIE Jia-you, HE Shan, FU He-lin, JIANG Xue-liang, ZHENG Liang, . Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(3): 893-902.
[12] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[13] JIANG Xiong, XU Nu-wen, ZHOU Zhong, HOU Dong-qi, LI Ang, ZHANG Min, . Failure mechanism of surrounding rock of bus-bar tunnels at Lianghekou hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2019, 40(1): 305-314.
[14] LI Dong, LU Yi-yu, RONG Yao, ZHOU Dong-ping, GUO Chen-ye, ZHANG Shang-bin, ZHANG Cheng-ke, . Rapid uncovering seam technologies for large cross-section gas tunnel excavated through coal seams using directional hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(1): 363-369.
[15] YANG Gong-biao, ZHANG Cheng-ping, MIN Bo, CAI Yi, . Elastic solution of soil displacement induced by shallow circular tunnel with a cavern in a stratum using function of complex variable method [J]. Rock and Soil Mechanics, 2018, 39(S2): 25-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[2] TAN Yun-zhi,KONG Ling-wei,GUO Ai-guo,FENG Xin1,WAN Zhi. Discussion on the compaction degree index of subgrade filled with laterite[J]. , 2010, 31(3): 851 -855 .
[3] JIE Ying, TANG Xiao-wei , LUAN Mao-tian. Finite-element free Galerkin coupling method for sand liquefaction-induced deformation[J]. , 2010, 31(8): 2643 -2647 .
[4] HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing. Initiation process simulation of debris deposit based on particle flow code[J]. , 2010, 31(S1): 394 -397 .
[5] LI Shu-cai,XU Bang-shu,DING Wan-tao,ZHANG Qing-song. Weighted function method for minimum rock cover thickness of subsea tunnel[J]. , 2009, 30(4): 989 -996 .
[6] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[7] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[8] LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. , 2011, 32(S1): 100 -105 .
[9] DENG Hua-feng, LI Jian-lin, LIU Jie, ZHU Min, GUO Jing, LU Tao. Research on propagation of compression shear fracture in rocks considering fissure water pressure[J]. , 2011, 32(S1): 297 -0302 .
[10] JIANG Shi-ping , RUI Xiao-ting , HONG Jun , RONG Bao , LIU Zhi-jun. Dynamic simulation of granular system[J]. , 2011, 32(8): 2529 -2532 .