›› 2007, Vol. 28 ›› Issue (4): 743-746.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of one-dimensional consolidation of double-layered viscoelastic ground

LIU Jia-cai1, ZHAO Wei-bing2, ZAI Jin-min1, WANG Xu-dong1   

  1. 1. College of Civil Engineering, Nanjing University of Technology, Nanjing 210009, China; 2. Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2005-04-04 Online:2007-04-10 Published:2013-09-05

Abstract: Soft clay has viscoelastic characteristics, which affects the consolidation and deformation of the soil. Based on the existing one-dimensional consolidation theory of saturated clays with generalized Voigt model, the generalized solution expressions of the two layers are obtained. According to the pore pressure and water flow continuity conditions at the conjunction plane of two layers and the boundary conditions at the top and bottom surfaces, the orthogonal relation of the system is presented. The unknown value in the generalized solution expressions can be determined by using continuity conditions, boundary conditions and the orthogonal relation. Generalized Voigt model can reflect the stress-strain relation of the soil at different phases; so the solutions can be applied extensively. A case of double-layered viscoelastic ground is analyzed where Merchant rheological model is applied. It is shown that the viscoelastity decreases the consolidation velocity of the soil. The more deep the soil element locate, the more its consolidation velocity is affected.

Key words: double-layered ground, one-dimensional consolidation, rheological model, soft clay, viscoelasticity

CLC Number: 

  • TU 433
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
[2] TONG Li-hong, WANG Jue, GUO Sheng-gen, ZHU Huai-long, XU Chang-jie, . One-dimensional consolidation characteristics of viscoelastic foundation with continuous drainage boundary under time- dependent loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1862-1868.
[3] LEI Hua-yang, LIU Guang-xue, ZHOU Jun, . Bearing property and failure mode of double-layer soft clay grounds in a dredger fill site [J]. Rock and Soil Mechanics, 2019, 40(1): 260-268.
[4] LIU Bin, XU Hong-fa, DONG Lu, , MA Yu-qing, , LI Ke-liang, . A nonlinear rheological model of rock salt based on DS-dashpot under cyclic loading [J]. Rock and Soil Mechanics, 2018, 39(S2): 107-114.
[5] GUO Hong-xian, ZHOU Ding. Discussion on stability of soil nailing in excavation in soft clay [J]. Rock and Soil Mechanics, 2018, 39(S2): 398-404.
[6] SHI Gang, LIU Zhong-yu, LI Yong-hui. One-dimensional rheological consolidation of soft clay under cyclic loadings considering non-Darcy flow [J]. , 2018, 39(S1): 521-528.
[7] CHENG Xing-lei, WANG Jian-hua, WANG Zhe-xue,. Model experiment on cyclic instability process of suction anchors in soft clays [J]. , 2018, 39(9): 3285-3293.
[8] CHEN Chao-bin, YE Guan-lin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test [J]. , 2018, 39(6): 2304-2310.
[9] ZHOU Ya-dong, DENG An, LU Qun, . A one-dimensional consolidation model considering large strain for unsaturated soil [J]. , 2018, 39(5): 1675-1682.
[10] YAN Shu-wang, ZHANG Jing-jing, TIAN Ying-hui, CHEN Hao,. Experiment and theory research on the pore pressure unloading characteristics of saturated clay under isotropic consolidation conditions [J]. , 2018, 39(3): 775-781.
[11] HU Xiu-qing , ZHANG Yan, FU Hong-tao, CHEN Lin, LUO Pan, NIE Yong, WANG Jun, . Effect of horizontal bidirectional coupled loads on dynamic properties of saturated soft clay [J]. , 2018, 39(3): 839-847.
[12] SONG Lin-hui, WANG Yu-hao, FU Lei, MEI Guo-xiong,. Test and analysis on buoyancy of underground structure in soft clay [J]. , 2018, 39(2): 753-758.
[13] WANG Lei, LI Lin-zhong, XU Yong-fu, XIA Xiao-he, SUN De-an,. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary [J]. , 2018, 39(11): 4142-4148.
[14] GU Ren-guo, ZOU Yu, FANG Ying-guang, HU Yu-guang, . Rheological model of soft soils using nonlinear instantaneous elastic modulus [J]. , 2018, 39(1): 237-241.
[15] CHEN Bo, SUN De-an, GAO You, LI Jian,. Experimental study of pore-size distribution of Shanghai soft clay [J]. , 2017, 38(9): 2523-2530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[2] HE Si-ming, WU Yong, LI Xin-po. Research on mechanism of uplift rock-socketed piles[J]. , 2009, 30(2): 333 -337 .
[3] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[4] CHEN Zhi-qiang, ZHANG Yong-xing, ZHOU Jian-ying. Experimental study of deep tunnel surrounding rock rockburst proneness with similarity material simulating method based on digital speckle correlation technique[J]. , 2011, 32(S1): 141 -148 .
[5] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[6] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[7] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[8] GONG Si-yuan,DOU Lin-ming,HE Jiang,HE Hu,LU Cai-ping,MU Zong-long. Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment[J]. , 2012, 33(1): 41 -47 .
[9] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[10] LIU Jie, LI Jian-lin, WAN Liang-peng, CAI Jian, XIAO Lei . Research on Dagangshan dam abutment slope anchorage optimization based on theory of unloading and seismic analysis[J]. , 2012, 33(S2): 275 -282 .