›› 2007, Vol. 28 ›› Issue (5): 944-950.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Stability analysis of embankment and excavation slope

ZHAO Jie1, 3, SHAO Long-tan2   

  1. 1. School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; 2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China; 3.The R&D Center of the Civil Engineering Technology, Dalian University, Dalian 116622, China
  • Received:2005-06-18 Online:2007-05-10 Published:2013-09-10

Abstract: Based on the finite element stress-strain analysis, the factor of safety of the slip surface is defined as the ratio of the critical shear intensity during failure to real shear stress, the authors utilize pattern search method to ascertain the critical slip surface of slope. Under the plane strain and homogeneous soil condition, this method is used to analyze the stability of embankment and excavation slope; and the result is compared with natural slope. It is shown that the shape of critical slip surfaces of the three kinds of slopes are similar; the factor of safety of natural slope is higher than the others. At the same time, the result of finite element method is compared with that of limit equilibrium method. Finally, the effect of soil parameters on the stability of embankment and excavation slope is analyzed.

Key words: finite element stress-strain analysis, factor of safety, slip surface, embankment slope, excavation slope

CLC Number: 

  • TB 115
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
    [2] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
    [3] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
    [4] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
    [5] YANG Shan-qi, LU Kun-lin, SHI Ke-bao, ZHAO Han-tian, CHEN Yi-ming,. Model tests on 3D slip surface of passive failure behind a rigid retaining wall [J]. , 2018, 39(9): 3303-3312.
    [6] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
    [7] XIAO Guo-feng, CHEN Cong-xing. Simulation of progressive failure process and stability analysis method for rock block [J]. , 2018, 39(8): 3001-3010.
    [8] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
    [9] YANG Zhi-yong, LI Dian-qing, CAO Zi-jun, TANG Xiao-song, . System reliability of soil slope using generalized subset simulation [J]. , 2018, 39(3): 957-966.
    [10] CHEN Zu-yu, LI Kang-ping, LI Xu, ZHAN Cheng-ming,. A preliminary study of allowable factor of safety in gravity retaining wall stability analysis [J]. , 2018, 39(1): 1-10.
    [11] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
    [12] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
    [13] LI Rui-lin, ZHOU Guo-qing, LIN Chao, ZHAO Guang-si, CHEN Guo-zhou,. Solution of earth pressure between slip surfaces under non-limit state considering soil arching effect [J]. , 2017, 38(11): 3145-3153.
    [14] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
    [15] CHEN Zu-yu , ZHAN Cheng-ming , YAO Hai-lin , CHEN Li-hong , LI Xu,. Safety criteria and standards for stability analysis of gravity retaining walls [J]. , 2016, 37(8): 2129-2137.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
    [2] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
    [3] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
    [4] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
    [5] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
    [6] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .
    [7] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
    [8] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .
    [9] XI Ren-shuang, CHEN Cong-xin, XIAO Guo-feng, HUANG Ping-lu. Study of influence of discontinuities on rock movement and surface deformation in eastern area of Chengchao iron mine[J]. , 2011, 32(S2): 532 -538 .
    [10] HE Si-ming , ZHANG Xiao-xi , WANG Dong-po . Study of computation methods of ultimate uplift capacity and determining position of failure surface of uplift piles in layered soil[J]. , 2012, 33(5): 1433 -1437 .