›› 2007, Vol. 28 ›› Issue (5): 1015-1020.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on fractal character of shear surface of rock-soil aggregate mixture

DONG Yun1, 2, CHAI He-jun3   

  1. 1. Department of Civil Engineering, Huaiyin Institute of Technology, Huaian 223001, China; 2. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210097, China; 3. Chongqing Communications Research and Design Institute, Chongqing 400067, China
  • Received:2005-06-06 Online:2007-05-10 Published:2013-09-10

Abstract: Rock-soil aggregate mixture is broadly used in roadbed, dykes and dams for its favorable engineering properties. Shear strength of the mixture becomes the most important mechanical index for stabilization and deformation analysis because it always occurrs shear failure along the weakness surface in filler. However, it is difficult to determine the shear strength for the complexity composition, non-regularity frame distributing of the mixture, and restriction of current measure instrument. This study carried out shear test on different kinds’ and different dmax rock-soil aggregate mixtures by using the improved shear test instrument, determined the intensity of the mixture conveniently; meanwhile, reappeared the actual shear surface; and further more, directly measured the gurgitation data of the surface. According to the principle of fractal geometry, the surface has well fractal property; the gurgitation data was used to calculate the fractal dimension of the shear surface by program that based on cover method of triangle prism superficial area. Finally, the relationship, between shear strength of the mixture and the fractal dimension of shear surface, is established so as to forecast the strength of the mixture quickly.

Key words: rock-soil aggregate mixture, shear test, shear surface, fractal dimension, shearing strength

CLC Number: 

  • TU 458
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LI Wen-Xuan, BIAN Shi-hai , LI Guo-ying, WU Jun-jie, . Interface model of coarse-grained soils and its application in earth rock dam [J]. Rock and Soil Mechanics, 2019, 40(6): 2379-2388.
[2] CHEN Guo-qing, TANG Peng, LI Guang-ming, ZHANG Guang-ze, WANG Dong, . Analysis of acoustic emission frequency spectrum characteristics and main fracture precursor of rock bridge in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(5): 1649-1656.
[3] ZHOU Hui, CHENG Guang-tan, ZHU Yong, CHEN Jun, LU Jing-jing, CUI Guo-jian, YANG Pin-qing, . Experimental study of shear deformation characteristics of marble dentate joints [J]. Rock and Soil Mechanics, 2019, 40(3): 852-860.
[4] GAO Qing-peng, CAO Ping, WANG Fei, WANG Zhu. Mechanical properties and failure criteria of multi-joint rock-like specimens under compression-shear [J]. Rock and Soil Mechanics, 2019, 40(3): 1013-1022.
[5] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[6] QIN Chang-an, CHEN Guo-qing, ZHENG Hai-jun, TANG Peng. Failure of rock bridge at the end and fracture condition under direct shear tests [J]. Rock and Soil Mechanics, 2019, 40(2): 642-653.
[7] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[8] ZHANG Lei, LIU Hui, WANG Tie-hang. Shear tests on loess-concrete interface under consolidation and unconsolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 238-244.
[9] CUI Guo-jian, ZHANG Chuan-qing, LIU Li-peng, ZHOU Hui, CHENG Guang-tan,. Study of effect of shear velocity on mechanical characteristics of bolt-grout interface [J]. , 2018, 39(S1): 275-281.
[10] JI Wen-dong, ZHANG Yu-ting, WANG Yang, PEI Wen-bin, . Comparative study of shear performance between coral sand and siliceous sand in cycles simple shear test [J]. , 2018, 39(S1): 282-288.
[11] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
[12] LIU Jia-shun, ZHANG Xiang-dong, SUN Jia-bao, YANG Jian-jun, FANG Tian-jian. Experimental study on the pore pressure and deformation of saturated silty clay under K0 consolidation and principal stress axis rotation [J]. , 2018, 39(8): 2787-2794.
[13] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
[14] CHEN Chen, LENG Wu-ming, YANG Qi, JIN Zi-hao, NIE Ru-song, QIU Jun,. Experimental study of mechanical properties of concrete pile-slurry-sand interface [J]. , 2018, 39(7): 2461-2472.
[15] ZHAO Kun, CHEN Wei-zhong, ZHAO Wu-sheng, YANG Dian-sen,SONG Wan-peng, LI Can, MA Shao-sen, . Direct shear test and numerical simulation for mechanical characteristics of the contact surface between the lining and shock absorption layer in underground engineering [J]. , 2018, 39(7): 2662-2670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Qing,ZHAO Jun-hai,WEI Xue-ying. Investigation of rock resistant coefficient in rocks around tunnel based on unified strength theory[J]. , 2009, 30(11): 3393 -3398 .
[2] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[3] LI Jia-gui, CHEN Zheng-han, HUANG Xue-feng, LI Jia. In-site test on earth pressure and saturating collapse test for unsaturated loess Q3 on high slope[J]. , 2010, 31(2): 433 -440 .
[4] FU Yu-hua, LI Xi-bing, DONG Long-jun. Analysis of smooth blasting parameters for tunnels in deep damaged rock mass[J]. , 2010, 31(5): 1420 -1426 .
[5] HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing. Initiation process simulation of debris deposit based on particle flow code[J]. , 2010, 31(S1): 394 -397 .
[6] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[7] DENG An-fu, ZHENG Bing, ZENG Xiang-yong. Numerical analysis of influence of building distance on superstructure and rock slope subgrade[J]. , 2009, 30(S2): 555 -559 .
[8] HE Xu-wen ,LIU Zhong ,LIAO Biao ,WANG Cui-cui. Stability analysis of jointed rock slopes based on discrete element method[J]. , 2011, 32(7): 2199 -2204 .
[9] JIANG Shi-ping , RUI Xiao-ting , HONG Jun , RONG Bao , LIU Zhi-jun. Dynamic simulation of granular system[J]. , 2011, 32(8): 2529 -2532 .
[10] YANG Feng-wei, LI Hai-bo, LIU Ya-qun, XIA Xiang, HAO Ya-fei, NIU Lei. Monitoring of blasting vibration and numerical simulation of slope in Taishan Nuclear Power Station[J]. , 2011, 32(S2): 628 -633 .