›› 2007, Vol. 28 ›› Issue (6): 1067-1072.

• Fundamental Theroy and Experimental Research •     Next Articles

Research on strength and microstructure feature of solidified saline soil in inshore with polymer

CHAI Shou-xi1,2,WANG Pei2,HAN Wen-feng2,LI Fang2,WEI Li2,WANG Xiao-yan3   

  1. 1. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China; 2. Department of Civil Engineering, Tianjin Institute of Urban Construction, Tianjin 300384, China; 3. Institute of Investigation, China Water Resources, Beifang Investigation, Design and Research Co. Ltd., Tianjin 300222, China
  • Received:2006-03-10 Online:2007-06-11 Published:2013-09-13

Abstract: Solidified saline soil in inshore with polymer-SH agent and lime has a very high compression strength, tensile strength and stability in nature and after soaking in comparison with solidified soil only by lime because soil particles were enveloped by SH agent and formed web structure between particles and in voids. Compression strength of solidified soil decreased after applying sinusoidal load, and has some attenuation with the growth of fatigue times under a preload value and constant amplitude of load. Value 30×103 times is a special starting point from which strength falls. It has been certified that SH agent has made the stable web structure in soils when two weeks and it is better when four weeks with the help of observation of SEM’ pictures. This web structure remain stable after soaking, it is obvious that SH agent’s solidifying reaction is no reversibility in soils.

Key words: solidified saline soil in inshore, polymer, SH agent, compression strength, fatigue test, microstructure

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[2] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[3] CHEN Wen-wu, ZHANG Qi-yong, LIU Hong-wei, . Infiltration grouting diffusion law of SH agent in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(2): 429-435.
[4] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[5] LÜ Qing-feng, ZHOU Gang, WANG Sheng-xin, HUO Zhen-sheng, MA Bo, . Microstructure characteristics of solidified saline soil based on nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(1): 245-249.
[6] DENG Hua-feng, WANG Chen-xi-jie, LI Jian-lin, ZHANG Yin-chai, WANG Wei, ZHANG Heng-bin. Influence mechanism of loading rate on tensile strength of sandstone [J]. , 2018, 39(S1): 79-88.
[7] CHEN Rui-feng, TIAN Gao-yuan, MI Dong-yun, DONG Xiao-qiang,. Study of basic engineering properties of loess modified by red mud [J]. , 2018, 39(S1): 89-97.
[8] FU Zi-guo, QIAO Deng-pan, GUO Zhong-lin, LI Ke-gang, XIE Jin-cheng, WANG Jia-xin. A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application [J]. , 2018, 39(9): 3147-3156.
[9] DENG Hua-feng, ZHANG Heng-bin, LI Jian-lin, WANG Chen-xi-jie, ZHANG Yin-chai, WANG Wei, HU Ya-yun. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone [J]. , 2018, 39(7): 2344-2352.
[10] WANG Peng, XU Jin-yu, FANG Xin-yu, WANG Pei-xi, LIU Shao-he, WANG Hao-yu,. Water softening and freeze-thaw cycling induced decay of red-sandstone [J]. , 2018, 39(6): 2065-2072.
[11] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[12] CHEN Bin, ZHOU Le-yi, ZHAO Yan-lin, WANG Zhi-chao, CHAO Dai-jie, JIA Gu-ning,. Relationship between microstructure and shear strength of weak interlayer of red sandstone under dry and wet cycles [J]. , 2018, 39(5): 1633-1642.
[13] YANG Gui, SUN Xin, WANG Yang-yang, . Tests on resilient behaviour of polymer rockfill materials [J]. , 2018, 39(5): 1669-1674.
[14] HUO Hai-feng, LEI Hua-yang, FENG Xing, WANG Xin-qiang, YAN Xiao-rong,. Correlation analysis of microstructure parameters and strength indices of disturbed clay [J]. , 2018, 39(11): 3949-3956.
[15] CUI Meng, LIU Jie, HAN Shang-yu, HONG Bao-ning,. Development and application of microstructure change test system for soil tensile failure process [J]. , 2018, 39(11): 4278-4286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Feng, YANG Hai-jun, YANG Chun-he. Analysis of residual brine of salt rock gas storage during injecting gas to eject brine[J]. , 2009, 30(12): 3602 -3606 .
[2] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[3] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[4] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[5] WANG Ling,SHEN Shui-long,BAI Yun,PENG Shao-jie. Characteristics of strength increase of cement treated Shanghai clayey soils[J]. , 2010, 31(3): 743 -747 .
[6] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[7] GAO Zhi-hua,LAI Yuan-ming,XIONG Er-gang,LI Bo. Experimental study of characteristics of warm and ice-rich frozen clay under cyclic loading[J]. , 2010, 31(6): 1744 -1751 .
[8] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[9] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[10] CHEN Xiang-hao,DENG Jian-hui,CHEN Ke-wen,ZHENG Jun,MENG Fan-li,XU Liang. Stress monitoring and analysis of gravelly soil corewall in high rockfill dam during construction[J]. , 2011, 32(4): 1083 -1088 .