›› 2007, Vol. 28 ›› Issue (6): 1113-1117.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Characteristics and mechanism of California bearing ratio of expansive soils

YU Fei, CHEN Shan-xiong, XU Xi-chang, YU Song   

  1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2005-06-06 Online:2007-06-11 Published:2013-09-13

Abstract: The influence of moisture content, compacting energy and swelling potential grade on California bearing ratio(CBR) of expansive soils is experimentally studied. It is found that the moisture content of maximum CBR is always higher than the optimum moisture content. The difference increases as the compacting energy or swelling potential grade increase. The unsaturated soils theory is applied to explain these characteristics. The regularity is due to the different gas-water phases of expansive soils with different saturation degrees. When the saturation degree is less than the boundary saturation ratio, the CBR value increase assumes the exponential relationship along with the increment of saturation degree. But when the saturation degree is more than the boundary value, the strength property is similar with saturated soil and the CBR value is controlled by the dry density.

Key words: expansive soil, California bearing ratio(CBR), unsaturated soils theory, saturation degree

CLC Number: 

  • TU 441
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[2] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[3] LI Guo-wei, SHI Sai-jie, HOU Yu-zhou, WU Jian-tao, LI Feng, WU Shao-p, . Experimental study of development technology of non-expansive soil in Yangtze River to Huaihe River water diversion experimental project [J]. Rock and Soil Mechanics, 2018, 39(S2): 302-314.
[4] HU Dong-xu, LI Xian , ZHOU Chao-yun, XUE Le, LIU Hong-fu, WANG Shi-ji. Quantitative analysis of swelling and shrinkage cracks in expansive soil [J]. , 2018, 39(S1): 318-324.
[5] YANG He-ping, TANG Xian-yuan, WANG Xing-zheng, XIAO Jie, NI Xiao,. Shear strength of expansive soils under wet-dry cycles with loading [J]. , 2018, 39(7): 2311-2317.
[6] ZHANG Chun-xiao, XIAO Hong-bin, BAO Jia-miao, YIN Ya-hu, YIN Duo-lin. Stress relaxation model of expansive soils based on fractional calculus [J]. , 2018, 39(5): 1747-1752.
[7] MAO Xin, WANG Shi-ji, CHENG Ming-shu, CHEN Zheng-han, WANG Xiao-qi,. Mechanical behavior of expansive soil under initial damage and wetting-drying cycles [J]. , 2018, 39(2): 571-579.
[8] YAO Chuan-qin, WEI Chang-fu, MA Tian-tian, CHEN He-long, CHEN Huo-dong,. Effects of pore solution on mechanical properties of expansive soil [J]. , 2017, 38(S2): 116-122.
[9] XIAN Shao-hua, XU Ying-zi, YAO Hai-lin, LU Zheng, LI Zhi-yong, DONG Cheng,. Model test study of constraint to deformation of expansive soil by anchor reinforced vegetation system [J]. , 2017, 38(S1): 158-166.
[10] WU Jun-hua, YANG Song,. Experimental study of matric suction measurement and its impact on shear strength under drying-wetting cycles for expansive soils [J]. , 2017, 38(3): 678-684.
[11] DENG You-sheng, WU Peng, ZHAO Ming-hua, DUAN Bang-zheng,. Strength of expansive soil reinforced by polypropylene fiber under optimal water content [J]. , 2017, 38(2): 349-353.
[12] WU Qing-hua, ZHANG Jia-fa, CUI Hao-dong, ZHU Guo-sheng, LIU Xi-yin,. Experimental study of drainage control of slopes with fine-coarse grain structure [J]. , 2017, 38(2): 392-399.
[13] LI Jing-jing, KONG Ling-wei, MU Kun, . In-situ borehole shear test on expansive soil and its strength characteristics [J]. , 2017, 38(2): 453-461.
[14] ZHENG Jun-jie, GUO Zhen-shan, CUI Lan, ZHANG Jun,. Stability analysis of expansive soil tunnel considering unsaturated seepage and moistening swelling deformation [J]. , 2017, 38(11): 3271-3277.
[15] CHU Ya, ZHA Fu-sheng, LIU Song-yu , CAI Guo-jun , KOU Bo,. Evaluation of expansibility of expansive soil using resistivity method [J]. , 2017, 38(1): 157-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[3] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[4] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[5] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[6] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[7] SHEN Hai-chao, CHENG Yuan-fang, ZHAO Yi-zhong, ZHANG Jian-guo, XIA Yuan-bo. Research on in-situ stresses and borehole stability of coal seam in Jingbian gas field[J]. , 2009, 30(S2): 123 -126 .
[8] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .
[9] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .