›› 2007, Vol. 28 ›› Issue (6): 1201-1204.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Optimization methods of retaining structure in deep foundation pit

XIAO Wu-quan,LENG Wu-ming   

  1. School of Civil and Architectural Engineering, Central South University, Changsha 410075, China
  • Received:2005-07-04 Online:2007-06-11 Published:2013-09-13

Abstract: The optimization methods including schemes of the supporting system and the detailed calculation and design of the selected program for deep foundation pit, are studied. Using multi-objective decision making fuzzy set analysis and analytical hierarchy process, the optimized project of the retaining system that is of the multiple attribute and fuzzy property is selected. Through the selection of decision variables, objective function, constraint condition (i.e. strength, size, displacement etc.) and optimization algorithm, the detailed structure of the selected program can be optimized in order to minimize the cost of construction. By the software Matlab 6.5, it is easy to solve this minimized value of nonlinear constraint minimization value. A practical example study shows that there is better effect on both selecting the retaining program and deciding the detailed structure.

Key words: deep foundation pit, scheme of retaining system, detailed structure, optimized design

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZENG Chao-feng, XUE Xiu-li, ZHENG Gang,. Effect of soil permeability on wall deflection during pre-excavation dewatering in soft ground [J]. , 2017, 38(10): 3039-3047.
[2] ZHUANG Hai-yang, ZHANG Yan-shu, XUE Xu-chao, XU Ye,. Deformation characteristics of narrow-long deep foundation pit for subway station in soft ground and compared with existing statistical results [J]. , 2016, 37(S2): 561-570.
[3] ZHANG Ge, MAO Hai-he. A new system stiffness of retaining structure of deep foundation pit in soft soil area [J]. , 2016, 37(5): 1467-1474.
[4] CHEN Kun,YAN Shu-wang,SUN Li-qiang,WANG Ya-wen,. Analysis of deformation of deep foundation pit under excavation unloading condition [J]. , 2016, 37(4): 1075-1082.
[5] WANG Jian-hua,LI Jiang-teng,LIAO Jun, . Several issues on the soil nailing wall combined with row piles in bracing the deep foundation pits of open cut tunnel [J]. , 2016, 37(4): 1109-1117.
[6] KANG Zhi-jun , TAN Yong , LI Xiang , WEI Bin , XU Chang-Jie,. Influences of depth of maximum lateral deflection of excavation support on adjacent environment [J]. , 2016, 37(10): 2909-2914.
[7] LI Dong, ZHANG Qi-chang, JIN Gang, WANG Jing. Analytical solution of earth pressure on supporting structure of deep foundation pit considering arching effects [J]. , 2015, 36(S2): 401-405.
[8] DING Zhi, WANG Da, WANG Jin-yan, WEI Xin-jiang. Deformation characteristics of Zhejiang soft soil deep foundation pits and their predictive analysis [J]. , 2015, 36(S1): 506-512.
[9] LIU Bo ,ZHANG Gong ,ZHOU Hao-liang ,LI Dong-yang ,LOU Xue-qian ,HUANG Mian ,WANG Xue-qing ,. Monitoring and analysis of variation of anchor prestress in saturated silty sand condition [J]. , 2014, 35(S1): 347-352.
[10] DAI Chun-quan ,QIN Zhe ,SU Jian-guang . Visco-elastoplastic analysis of deep foundation pit construction in Yellow River alluvial plain [J]. , 2013, 34(S1): 142-147.
[11] XU Yang-qing , LIU Guo-feng , SHENG Yong-qing . Analysis and evaluation of sealing effect of rock-socketed underground diaphragm in deep foundation pit [J]. , 2013, 34(10): 2905-2910.
[12] DAI Chun-quan ,WANG Lei . VAR modeling of construction deformation prediction of deep foundation pit and application [J]. , 2012, 33(S2): 395-400.
[13] LIANG Fa-yun , CHU Feng , SONG Zhu , LI Yong-sheng. Centrifugal model test research on deformation behaviors of deep foundation pit adjacent to metro stations [J]. , 2012, 33(3): 657-664.
[14] LIU Xiao-li, ZHOU He, ZHANG Zhan-min. Analysis of surface settlement estimation of deep foundation pit excavation in soft soil [J]. , 2011, 32(S1): 90-94.
[15] WEI Xin-jiang , YU Yin , ZHANG Shi-min. Optimization of supporting schemes for deep foundation pit based on fuzzy grey relation projection method [J]. , 2011, 32(S1): 438-0444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Kang, XU Jin, WU Sai-gang, ZHANG Ai-hui. Research on surrounding rock stability in local collapse section of highway tunnels[J]. , 2009, 30(10): 2955 -2960 .
[2] CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, QIN Bing, WEI Xue-wen. Research on meso-structures and their evolution laws of expansive soil and loess[J]. , 2009, 30(1): 1 -11 .
[3] YE Wei-min, HUANG Wei, CHEN Bao, YU Chen1, WANG Ju. Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. , 2009, 30(7): 1899 -1903 .
[4] WANG Ji-liang, CHEN Jian-ping, YANG Jing, QUE Jin-sheng. Method of distance discriminant analysis for determination of classification of rockburst[J]. , 2009, 30(7): 2203 -2208 .
[5] HU Yun-shi, SU Hui, CHENG Yi-chong, AI Zhi-yong. State space solution to three-dimensional consolidation of layered rock with compressible constituents[J]. , 2011, 32(S1): 176 -180 .
[6] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[7] CHEN Jian-gong ,ZHOU Tao-tao ,ZHANG Yong-xing. Shock failure mechanism of zonal disintegration within surrounding rock in deep chamber[J]. , 2011, 32(9): 2629 -2634 .
[8] CHEN Xu-guang , ZHANG Qiang-yong , DUAN Kang , LIU De-jun , ZHANG Ning . Research on application of optical sensor-based measuring method to model test[J]. , 2012, 33(5): 1409 -1415 .
[9] LIU Hai-ming , YANG Chun-he , ZHANG Chao , MAO Hai-jun , CAO Jing . Study of characteristics of power function Mohr strength criterion for tailings material under high pressures[J]. , 2012, 33(7): 1986 -1992 .
[10] GUO Chang-bao ,ZHANG Yong-shuang ,MENG Qing-wei ,ZHENG Guang ,LI Hai-hua . Research on shear strength of remolding diatomite by ring shear tests[J]. , 2013, 34(1): 109 -114 .