›› 2013, Vol. 34 ›› Issue (9): 2541-2545.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of frost heave and thawing settlement of soilbags under different freeze-thaw cycles

LI Zhuo1, 2,LIU Si-hong3,WANG Liu-jiang3,ZHANG Kai3,KONG Wei-yao3   

  1. 1. Nanjing Hydraulic Research Institute, Nanjing 210029, China; 2. Dam Safety Management Center of the Ministry of Water Resources, Nanjing 210029, China; 3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
  • Received:2012-03-11 Online:2013-09-11 Published:2013-09-13

Abstract: In order to reveal anti-frost heaving mechanism of soilbags under different freeze-thaw cycles in seasonally frozen regions, comparative model experiments on soilbags and soil are carried out under different freeze-thaw cycles, to investigate the frost heave relationship and the thawing settlement relationship between soilbags and soil, both in open and close systems. The results show that: Frost heave of soilbags is less than that of soil; thawing settlement of soilbags is also less than that of soil after experiencing 4 freeze-thaw cycles in closed system. Frost heave of soil is 1.9 times that of soilbags; thawing settlement of soil is 2.2 times that of soilbags in open system. Groundwater recharge for soilbags is far less than that for soil in open system. It is concluded that soilbags can efficiently prevent building foundation from frost heave collapse, and it can provide references to frost heave prevention of canal linings.

Key words: freeze-thaw cycles, soilbags, frost heave, thawing settlement, seasonally frozen regions

CLC Number: 

  • TU 411
[1] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[2] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[3] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[4] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[5] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[6] YE Wan-jun, LI Chang-qing, YANG Geng-she, LIU Zhong-xiang, PENG Rui-qi. Scale effects of damage to loess structure under freezing and thawing conditio [J]. , 2018, 39(7): 2336-2343.
[7] WANG Peng, XU Jin-yu, FANG Xin-yu, WANG Pei-xi, LIU Shao-he, WANG Hao-yu,. Water softening and freeze-thaw cycling induced decay of red-sandstone [J]. , 2018, 39(6): 2065-2072.
[8] ZHANG Yu-wei, XIE Yong-li, LI You-yun, LAI Jin-xing,. A frost heave model based on space-time distribution of temperature field in cold region tunnels [J]. , 2018, 39(5): 1625-1632.
[9] MENG Shang-jiu, LI Xiang, SUN Yi-qiang, CHENG You-kun,. In-situ monitoring and analysis of permanent subgrade deformation in seasonally frozen regions [J]. , 2018, 39(4): 1377-1385.
[10] SHI Rong-jian, CHEN Bin, YUE Feng-tian, ZHANG Yong, LU Lu, . Model test on freezing reinforcement for shield junction in soft stratum (Part2): Frost heave effect of soft stratum during freezing process [J]. , 2017, 38(9): 2639-2646.
[11] XU Lei, LIU Si-hong, LU Yang, SONG Ying-jun, YANG Qi. Physico-mechanical properties of expansive soil under freeze-thaw cycles [J]. , 2016, 37(S2): 167-174.
[12] WEI Hou-zhen, ZHOU Jia-zuo, WEI Chang-fu, CHEN Pan. Experimental study of water migration in saturated freezing silty soil [J]. , 2016, 37(9): 2547-2552.
[13] LIU Quan-sheng , HUANG Shi-bing , KANG Yong-shui , LIU Jian-ping,. Preliminary study of frost heave pressure and its influence on crack and deterioration mechanisms of rock mass [J]. , 2016, 37(6): 1530-1541.
[14] WANG Yong-tao , WANG Da-yan , MA Wei , MU Yan-hu , GUAN Hui , GU Tong-xin,. Experimental study of development of cryostructure and frost heave of the Qinghai-Tibet silty clay under one-dimensional freezing [J]. , 2016, 37(5): 1333-1342.
[15] ZHAN Gao-feng, ZHANG Qun, ZHU Fu, DONG Wei-zhi. Research on influence of freeze-thaw cycles on static strength of lime-treated silty clay [J]. , 2015, 36(S2): 351-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .