›› 2007, Vol. 28 ›› Issue (8): 1621-1625.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on ultimate bearing capacity of upper rock plate of karst cave

LI Ren-jiang,SHENG Qian,ZHANG Yong-hui,JING Feng,LENG Xian-lun   

  1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 43007l, China
  • Received:2006-04-24 Online:2007-08-10 Published:2013-10-15

Abstract: FLAC3D is applied to analyze the stability and the ultimate bearing capacity of upper plate of karst cave under the loading of rectangular spread foundation; and two typical types of rock mass are studied. The ultimate bearing capacity of upper plate of karst cave in various engineering conditions are presented by analyzing the characteristics of rock stress and displacement and the whole evolvement process of plastic zones in the upper plate. The results show that the ultimate bearing capacity increases with the increasing of the thickness of upper plate and decreases with the increasing of the width of karst cave. In the same conditions, the ultimate bearing capacity of rock IV is only one third of rock III.

Key words: karst cave, upper plate, spread foundation, finite difference method, ultimate bearing capacity

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[2] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[3] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
[4] HUANG Sheng-gen, LIU Dong-jun, HU Yong-jian,. Simulation analysis and application study of electromagnetic wave computed tomography in detecting karst caves [J]. , 2018, 39(S1): 544-550.
[5] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
[6] CAO Wen-gui, TAN Jian-hui, HU Wei-dong, . Upper bound of ultimate bearing capacity for the reinforced grounds [J]. , 2018, 39(6): 1955-1962.
[7] LI Chuan-xun, DONG Xing-quan, JIN Dan-dan, WANG Yu-lin,. Large-strain nonlinear consolidation of double-layered soft clay with threshold gradient [J]. , 2018, 39(5): 1877-1884.
[8] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
[9] KONG Gang-qiang, PENG Huai-feng, ZHU Xi , GU Hong-wei, ZHOU Li-duo,. Model tests on bearing capacity of longitudinal section shaped pile under lateral load [J]. , 2018, 39(1): 229-236.
[10] LEI Yong, YIN Jun-fan, CHEN Qiu-nan, YANG Wei,. Determination of ultimate bearing capacity of cave roof using limit analysis method [J]. , 2017, 38(7): 1926-1932.
[11] HU Wei-dong, CAO Wen-gui, YUAN Qing-song,. Upper bound solution for ultimate bearing capacity of ground adjacent to slope based on nonlinear failure criterion [J]. , 2017, 38(6): 1639-1646.
[12] JIU Yong-zhi, ZHU Yan-zhi,. Nonlinear analysis for bearing characteristics of vertically loaded single pile in non-homogeneous soil under excavation [J]. , 2017, 38(6): 1666-1674.
[13] KONG Gang-qiang, GU Hong-wei, CHE Ping, REN Lian-wei, PENG Huai-feng,. Impact of pile shaft shapes on vertical bearing capacity of belled piles [J]. , 2017, 38(2): 361-367.
[14] LI Chuan-xun , DONG Xing-quan , JIN Dan-dan , XIE Kang-he,. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient [J]. , 2017, 38(2): 377-384.
[15] ZHANG Zhen, CHEN Zhong-da, ZHU Yao-ting, HU Wen-hua, WU Fu-quan, LIU Chao-qun,. Effect of in-situ stress on stability of underlying karst cave [J]. , 2016, 37(S2): 715-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Zhao-qian,XU Ming-de,LIU Quan-sheng. The research on the methodology of weighted average evaluation for surrounding rock stability of tunnel[J]. , 2009, 30(11): 3464 -3468 .
[2] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] Wang Tie-hang, Luo Shao-feng, Liu Xiao-jun. Testing study of freezing-thawing strength of unsaturated undisturbed loess considering influence of moisture content[J]. , 2010, 31(8): 2378 -2382 .
[6] WANG Guan-shi,LI Chang-hong,HU Shi-li,FENG Chun,LI Shi-hai. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. , 2010, 31(11): 3487 -3492 .
[7] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[8] KE Chang-ren, GE Xiu-run, JIANG Jun-ling, XIONG Jian-min, WANG Shui-lin. Complete curve simulation of rock under uniaxial compression based on virtual internal bond model[J]. , 2009, 30(5): 1509 -1514 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] MA Li-qiu,ZHANG Jian-min,ZHANG Ga,ZHENG Rui-hua. Research of blasting centrifugal modeling system and basic experiment[J]. , 2011, 32(3): 946 -950 .