›› 2013, Vol. 34 ›› Issue (S1): 155-161.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of compaction characteristics and fractal feature in crushing of coarse-grained soils

DU Jun, HOU Ke-peng, LIANG Wei, PENG Guo-cheng   

  1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2012-06-14 Online:2013-08-30 Published:2014-06-09

Abstract: Based on compaction test of different gradations and different moisture contents of coarse-grained soils, the compaction characteristics and fractal feature of coarse-grained soils are studied. The results show that the maximum dry density of coarse-grained soils would increase with the increase of coarse grained content in gradation. The maximum dry density reach the maximum value as the coarse grained content is 70%; while it would decrease with the increase of coarse grained content in gradation as the content is more than 70%. The particle size distribution of crushing granular has a good fractal feature. The crushing fractal dimensions are between 2.279 0-2.892 2; higher than that before test. Under the same gradation condition, the crushing fractal dimension of coarse-grained soils increased with moisture content. The increase amplitude is obvious when P5 is larger than 50%. A good linear regression relation exists between crushing fractal dimensions D and broken rate Bg. Difference value of the granularity fractal dimension before and after compaction can show the crushing degree of coarse-grained soils objectively. Coarse grained content and moisture content are two key factors affected on particle breakage; but the influence of coarse grained content is more obvious.

Key words: coarse-grained soils, compaction test, moisture content, coarse grained content, fractal, particle breakage

CLC Number: 

  • TU443
[1] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[2] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[3] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[4] ZHOU Cui-ying, LIANG Ning, LIU Zhen, . Fractal characteristics of compression failure of red soft rock and cascading failure process [J]. Rock and Soil Mechanics, 2019, 40(S1): 21-31.
[5] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[6] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[7] PENG Yu, DING Xuan-ming, XIAO Yang, CHU Jian, DENG Wei-ting, . Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method [J]. Rock and Soil Mechanics, 2019, 40(7): 2663-2672.
[8] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[9] JI Guo-fa, LI Kui-dong, ZHANG Gong-she, LI Shao-ming, ZHANG Lei, LIU Wei, . Fractal calculation method of model I fracture toughness of shale rock and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1925-1931.
[10] DING Jian-yuan, CHEN Xiao-bin, ZHANG Jia-sheng, LIU Yi-yin, XIAO Yuan-jie, . Predicting model for coarse-grained soil particle breakage process using logarithmic probability regression mathematic method [J]. Rock and Soil Mechanics, 2019, 40(4): 1465-1473.
[11] GUO Wan-li, ZHU Jun-gao, QIAN Bin, ZHANG Dan, . Particle breakage evolution model of coarse-grained soil and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(3): 1023-1029.
[12] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[13] MA Lin-jian, LI Zeng, LUO Zong-mu, WEI Hou-zhen, DUAN Li-qun, . Experimental study of strain rate effects on mechanical properties of coral particles [J]. Rock and Soil Mechanics, 2019, 40(12): 4637-4643.
[14] GUO Wan-li, CAI Zheng-yin, WU Ying-li, HUANG Ying-hao. Study on the particle breakage energy and dilatancy of coarse-grained soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4703-4710.
[15] XIAO Xiao-chun, FAN Yu-feng, WU Di, DING Xin, WANG Lei, ZHAO Bao-you, . Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203-4212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .