›› 2013, Vol. 34 ›› Issue (10): 3018-3027.

• Numerical Analysis • Previous Articles     Next Articles

Model testing and numerical simulation study of evolutionary process of thrust load caused landslide

YONG Rui, HU Xin-li, TANG Hui-ming, LI Chang-dong, MA Jun-wei, SONG You-jian   

  1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
  • Received:2013-01-20 Online:2013-10-09 Published:2013-10-18

Abstract: A physical model has been developed to study the whole evolutionary process of thrust load caused landslide under the multi-stage loading of MTS electro-hydraulic servo loading and analysis system. The displacement and deformation of the thrust load caused landslide model’s top surface are non-consecutively monitored with advanced 3D laser scanning technology. On the basis of multi-fractal theory, the variation of multi-fractal dimension of displacement in the evolutionary process of thrust load caused landslide is studied through the experiment. The experimental results show that the deformation and failure mode of thrust load caused landslide are dominated by general shear failure and it presents explicit developing phased characteristics. When the slope is in margin compressing stage, the deformation on the surface of the landslide is formed as some parts moving forward and uplift on the margin of the landslide, and the multi-fractal dimensions of displacement are decreasing orderly. When the slope is in uniform deformation stage, obvious displacement can be seen on the surface of the landslide model and the deformation keeps spreading to the front and sides of it. Uplift phenomenon can be seen in some parts in the front and center. During this stage, the multi-fractal dimensions of displacement decrease firstly, and then increase. When the slope is in accelerating deformation stage, landslide model surface presents sustained, rapid and obvious deformation associated with horizontal, vertical expansion cracks in the front and center part of it. During this stage, the multi-fractal dimensions of displacement are increasing gradually. Based on the landslide physical model test, FLAC3D numerical software is used to simulate the evolutionary process of thrust load caused landslide. It is verified that evolutionary process of landslide can be divided into the above three stages. Also the simulation discloses that the attenuation of the stability coefficient of landslide is nonlinear and the attenuation rate is decreasing.

Key words: landslide, model test, evolution, multi-fractal dimension, 3D laser scanning

CLC Number: 

  • P 642.22
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] CHEN He, ZHANG Yu-fang, ZHANG Xin-min, WEI Shao-wei, . Full-scale model experiments on anti-sliding characteristics of high-pressure grouting steel-tube micropiles [J]. Rock and Soil Mechanics, 2020, 41(2): 428-436.
[3] GAO Feng, CAO Shan-peng, XIONG Xin, ZHOU Ke-ping, ZHU Long-yin, . Brittleness evolution characteristics of cyan sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 445-452.
[4] SONG Yong-jun, YANG Hui-min, ZHANG Lei-tao, REN Jian-xi. CT real-time monitoring on uniaxial damage of frozen red sandstone [J]. Rock and Soil Mechanics, 2019, 40(S1): 152-160.
[5] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[6] ZHAI Ming-lei, GUO Bao-hua, WANG Chen-lin, JIAO Feng, . Compression-shear failure characteristics of rock with penetrated fracture under normal unloading condition [J]. Rock and Soil Mechanics, 2019, 40(S1): 217-223.
[7] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[8] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[9] ZHU Lei, HUANG Run-qiu, CHEN Guo-qing, YAN Ming, . Mechanical model and evolution of fracture system with a gentle dip angle in rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 53-62.
[10] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[11] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[12] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[13] CHEN Yong-qing, WEN Chang-ping, FANG Xuan-qiang, . Modified Yin’s double-yield-surface model for bioenzyme-treated expansive soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3515-3523.
[14] HUANG Xiao-hu, LEI De-xin, XIA Jun-bao, YI Wu, ZHANG Peng, . Forecast analysis and application of stepwise deformation of landslide induced by rainfall [J]. Rock and Soil Mechanics, 2019, 40(9): 3585-3592.
[15] DENG Mao-lin, YI Qing-lin, HAN Bei, ZHOU Jian, LI Zhuo-jun, ZHANG Fu-ling, . Analysis of surface deformation law of Muyubao landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2019, 40(8): 3145-3152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[7] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[8] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[9] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[10] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .