›› 2006, Vol. 27 ›› Issue (2): 184-188.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Spatial deformation analysis of cantilever soldier pile retaining structure in deep foundation pit

XU Xi-chang, CHEN Shan-xiong, XU Hai-bin   

  1. Institute of Rock and Soil Mechanics, The Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2005-03-04 Online:2006-02-10 Published:2013-10-25

Abstract: According to a lot of field tests and numerical efforts, the spatial deformation mode of the top beam and pile is deduced for the cantilever soldier pile retaining structure in rectangular excavation; and the expression of the potential energy is derived for the total supporting system. Based on the principle of minimum potential energy, a new analytic solution to determine the maximum displacement of the pile head is derived; and the effects of the retaining structural parameters on the maximum displacement are discussed. Results show that the maximum displacement of the pile head increases with the increase of the surcharge and the spacing of the pile linearly. When the excavation length increases to a critical length, the maximum displacement will be a constant. In addition, the coefficient of the embedded depth of the pile has an dramatic effect on the maximum displacement. Finally, the result obtained from the proposed approach is compared with field tests and elastic resistance method.

Key words: deep foundation pit, cantilever soldier pile retaining structure, principle of minimum potential energy, spatial deformation analysis, maximum displacement of pile head

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GU Dan-ping, LING Tong-hua, . Analysis of bearing ratio of cement soil and displacement at the top of wall for soil mixing wall construction method of cantilever type [J]. Rock and Soil Mechanics, 2019, 40(5): 1957-1965.
[2] LIU Su-jin, GUO Ming-wei, LI Chun-guang, . Determination of main sliding direction for three-dimensional slope [J]. Rock and Soil Mechanics, 2018, 39(S2): 37-44.
[3] ZENG Chao-feng, XUE Xiu-li, ZHENG Gang,. Effect of soil permeability on wall deflection during pre-excavation dewatering in soft ground [J]. , 2017, 38(10): 3039-3047.
[4] ZHUANG Hai-yang, ZHANG Yan-shu, XUE Xu-chao, XU Ye,. Deformation characteristics of narrow-long deep foundation pit for subway station in soft ground and compared with existing statistical results [J]. , 2016, 37(S2): 561-570.
[5] ZHANG Ge, MAO Hai-he. A new system stiffness of retaining structure of deep foundation pit in soft soil area [J]. , 2016, 37(5): 1467-1474.
[6] CHEN Kun,YAN Shu-wang,SUN Li-qiang,WANG Ya-wen,. Analysis of deformation of deep foundation pit under excavation unloading condition [J]. , 2016, 37(4): 1075-1082.
[7] WANG Jian-hua,LI Jiang-teng,LIAO Jun, . Several issues on the soil nailing wall combined with row piles in bracing the deep foundation pits of open cut tunnel [J]. , 2016, 37(4): 1109-1117.
[8] KANG Zhi-jun , TAN Yong , LI Xiang , WEI Bin , XU Chang-Jie,. Influences of depth of maximum lateral deflection of excavation support on adjacent environment [J]. , 2016, 37(10): 2909-2914.
[9] LI Dong, ZHANG Qi-chang, JIN Gang, WANG Jing. Analytical solution of earth pressure on supporting structure of deep foundation pit considering arching effects [J]. , 2015, 36(S2): 401-405.
[10] DING Zhi, WANG Da, WANG Jin-yan, WEI Xin-jiang. Deformation characteristics of Zhejiang soft soil deep foundation pits and their predictive analysis [J]. , 2015, 36(S1): 506-512.
[11] LIU Bo ,ZHANG Gong ,ZHOU Hao-liang ,LI Dong-yang ,LOU Xue-qian ,HUANG Mian ,WANG Xue-qing ,. Monitoring and analysis of variation of anchor prestress in saturated silty sand condition [J]. , 2014, 35(S1): 347-352.
[12] DAI Chun-quan ,QIN Zhe ,SU Jian-guang . Visco-elastoplastic analysis of deep foundation pit construction in Yellow River alluvial plain [J]. , 2013, 34(S1): 142-147.
[13] XU Yang-qing , LIU Guo-feng , SHENG Yong-qing . Analysis and evaluation of sealing effect of rock-socketed underground diaphragm in deep foundation pit [J]. , 2013, 34(10): 2905-2910.
[14] DAI Chun-quan ,WANG Lei . VAR modeling of construction deformation prediction of deep foundation pit and application [J]. , 2012, 33(S2): 395-400.
[15] JIN Jian-ming ,LIANG Shi-hua . Nonlinear analysis of settlement of axially loaded single pile in Gibson soil [J]. , 2012, 33(6): 1857-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[2] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[3] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[4] MENG Qing-shan,KONG Ling-wei,CHEN Neng-yuan,FAN Jian-hai,GUO Gang. Centrifugal model test on slope supporting with pile-anchor combined retaining wall[J]. , 2010, 31(11): 3379 -3384 .
[5] XIAO Shi-rong,LIU De-fu,HU Zhi-yu. Study of high speed slide mechanism of Qianjiangping landslide in Three Gorges Reservoir area[J]. , 2010, 31(11): 3531 -3536 .
[6] LIU Wen-lian, WEI Li-de. Study of calculation model of anchors in strength reduction FEM[J]. , 2010, 31(12): 4021 -4026 .
[7] FANG Jing-nian, ZHOU Hui, HU Da-wei, SHAO Jian-fu, LIANG Yu-lei. Coupled elastoplastic-damage model for salt rock[J]. , 2011, 32(2): 363 -368 .
[8] WANG Hong-liang , FAN Peng-xian , WANG Ming-yang , LI Wen-pei , QIAN Yue-hong. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone[J]. , 2011, 32(5): 1340 -1346 .
[9] FAN Xiao-yi. Landslide displacement multifractal and its application to prediction of evolvement trend[J]. , 2011, 32(6): 1831 -1837 .
[10] FAN Heng-hui ,GAO Jian-en ,WU Pu-te ,LOU Zong-ke. Analysis of influence factors for solidified soil strength based on change of physicochemical properties of loess[J]. , 2011, 32(7): 1996 -2000 .