›› 2013, Vol. 34 ›› Issue (11): 3077-3084.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Water retention properties and mesomechanism of silt under consolidation effect

TAN Yun-zhi1,HU Xin-jiang1,YU Bo1,ZHANG Hua1,FU Wei2   

  1. 1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, China
  • Received:2013-04-24 Online:2013-11-09 Published:2013-11-11

Abstract: In light of traditional instrument which can’t consider the factors of stress and temperature in the geotechnical engineering, a set of multifunctional soil-water characteristic curve test instrument is developed. Taking silt as study object, the soil-water characteristic curve tests under the effect of different consolidation stresses are carried out. The volume shrinkage deformation is also measured at the same time so as to amend miscount caused by volume change. It is found that the shrinkage is obvious in the drying process; and the smaller consolidation stress is, the more shrinkage is. But the soil volume remains unchanged in the wetting process. The consolidation stress has a great influence on the air-entry value and wetting (drying) rates. The air-entry value and wetting (drying) rates are greater when the consolidation stress increases. Finally, the mesoscopic tests under the action of different consolidation stresses are carried out for revealing its influence mechanism. The test results show that the large pore between the soil aggregate is compressed mainly by consolidation stress; but the pore between soil particles is less effect by it. The soil-water properties are related to the pore size and its distribution mode closely. The large pore has influence on the air-entry value and the distribution mode has influence on the wetting (drying) rates.

Key words: soil-water characteristic curve, consolidation stress, wetting (drying) deformation, pore distribution, water retention mechanism

CLC Number: 

  • TU 411
[1] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[2] CHEN Ren-peng, WANG Peng-fei, LIU Peng, CHENG Wei, KANG Xin, YANG Wei, . Experimental study on soil-water characteristic curves of subgrade coal gangue filler [J]. Rock and Soil Mechanics, 2020, 41(2): 372-378.
[3] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[4] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[5] WEI Xing, ZHANG Zhao, WANG Gang, ZHANG Jian-min, . DEM study of mechanism of large post-liquefaction deformation of saturated sand [J]. Rock and Soil Mechanics, 2019, 40(4): 1596-1602.
[6] LI Ming-yu, SUN Wen-jing. Water retention behaviour of biochar-amended clay and its influencing mechanism [J]. Rock and Soil Mechanics, 2019, 40(12): 4722-4730.
[7] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, LI Biao, ZHOU Yong-qiang, . Swelling and shrinkage characteristics study of Lushi expansive rock under dry and wet circulation [J]. Rock and Soil Mechanics, 2019, 40(11): 4279-4288.
[8] FENG Shang-xin, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, CHEN Xi. Mesostructural change of soil-rock mixtures based on NMR technology [J]. , 2018, 39(8): 2886-2894.
[9] TAO Gao-liang, LI Jin, ZHUANG Xin-shan, XIAO Heng-lin, CUI Xi-lin, XU Wei-sheng. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics [J]. , 2018, 39(4): 1256-1262.
[10] TAO Gao-liang, BAI Liang, YUAN Bo, GAN Shi-chao. Study of relationship between soil-water characteristic curve and NMR curve [J]. , 2018, 39(3): 943-948.
[11] LI Cheng-sheng, KONG Ling-wei, BAI Wei, AN Ran, LI Tian-guo, . Hysteresis model of soil-water characteristic curve [J]. , 2018, 39(2): 598-604.
[12] LIU Xing-zhi, LIU Xiao-wen, CHEN Ming, GU Ming-han. Soil-water characteristic curve based on particle contact model using three unequal particle sizes [J]. , 2018, 39(2): 651-656.
[13] LU Hai-feng, CHEN Pan, WEI Chang-fu,. Evolution of suction strength of clayey soil under drying conditions and its microscopic mechanism [J]. , 2017, 38(S2): 145-150.
[14] WANG Jiao, SHAO Sheng-jun, CHEN Pan,. Experimental study of soil water properties, compression yield and collapse deformation of unsaturated remolded loess [J]. , 2017, 38(S2): 217-222.
[15] FANG Jin-jin, FENG Yi-xin, SHAO Sheng-jun,. Soil-water characteristics of intact Q3 loess under true triaxial condition [J]. , 2017, 38(9): 2597-2604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[2] YANG Ai-wu,YAN Shu-wang,DU Dong-ju,ZHAO Rui-bin,LIU Ju. Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J]. , 2010, 31(9): 2930 -2934 .
[3] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[4] HE Si-ming, WU Yong, LI Xin-po. Research on restitution coefficient of rock fall[J]. , 2009, 30(3): 623 -627 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[7] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[8] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] LU Kun-lin, ZHU Da-yong, YANG Yang. Calculation charts for estimating safety factors of 3D homogeneous slopes[J]. , 2012, 33(S2): 111 -117 .