›› 2013, Vol. 34 ›› Issue (11): 3091-3095.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Back analysis of viscoelasto-plastic constitutive parameters of artificial frozen soil

YUAN Wen-hua   

  1. 1. Research Center of Mining Underground Engineering, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Received:2013-08-12 Online:2013-11-09 Published:2013-11-11

Abstract: By lots of creep test researches, artificial frozen clay shows an obvious creep behavior under high deviatoric stress. When artificial frozen clay in low stress level, a viscoelastic creep deformation presents. While in high stress level, viscoplastic creep deformation presents. On the basis of Nishihara model, parabolic viscoelasto-plastic creep constitutive model is constructed by adding a viscoelastic element and parabolic yield function instead of plastic yield. The modified Nishihara model can describe the shear creep characteristics of artificial frozen soil well. Based on niche technology, genetic algorithm and viscoelasto-plastic theory, the model of viscoelasto-plastic displacement back analysis for artificial frozen soil has been set up by finite element program generator (FEPG). With the measured data, displacement back analysis is conducted during the excavation of deep freezing shaft. And the obtained parameters of mechanical model for frozen soil agree with the test results. The deviation between numerical calculation results and measured data is less than 6%; so the inversion results verify the feasibility of the model. The constitutive model parameters, which obtained by displacement back analysis for artificial frozen soil, can reflect the average of frozen wall construction process and effective freezing range. So it has wide representation and important engineering significance for frozen wall stress field, displacement field and stability prediction.

Key words: genetic algorithm, displacement back analysis, artificial frozen soil, viscoelasto-plastic constitutive model, FEPG

CLC Number: 

  • TU 445
[1] CUI Xue-jie, YAN E-chuan, CHEN Wu. Cluster analysis of discontinuity occurrence of rock mass based on improved genetic algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 374-380.
[2] WANG Wei, CHEN Guo-qing, ZHENG Shui-quan, ZHANG Guang-ze, WANG Dong, . Study on the vector sum method of slope considering tensile-shear progressive failure [J]. Rock and Soil Mechanics, 2019, 40(S1): 468-476.
[3] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[4] LI Lian-xiang, LIU Jia-dian, LI Ke-jin, HUANG Heng-li, JI Xiang-kai, . Study of parameters selection and applicability of HSS model in typical stratum of Jinan [J]. Rock and Soil Mechanics, 2019, 40(10): 4021-4029.
[5] SUN Ming-she, MA Tao, SHEN Zhi-jun, WU Xu, WANG Meng-shu,. Study of lining sharing surrounding rock pressure in composite lining structure [J]. , 2018, 39(S1): 437-445.
[6] WANG Shao-jie, LU Ai-zhong, ZHANG Xiao-li. Analytical method of displacement back analysis for horseshoe tunnel excavated in transverse isotropic rock mass [J]. , 2018, 39(S1): 495-504.
[7] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
[8] TIAN Mao-lin, XIAO Hong-tian, YAN Qiang-gang,. Displacement back analysis of rock parameters of Hoek-Brown criterion using nonlinear regression method [J]. , 2017, 38(S1): 343-350.
[9] WANG Wei , YANG Min , SHANGGUAN Shi-qing,. Pile diameter optimization analysis method of piled raft foundation based on minimization of differential settlements [J]. , 2015, 36(S2): 178-184.
[10] LI Zhong , YANG Jun , . Stability analysis of slope under complex stress conditions based on multi-population genetic algorithm [J]. , 2015, 36(5): 1488-1495.
[11] LI Ning , WANG Li-guan , JIA Ming-tao , CHEN Jian-hong , TAN Zheng-hua,. Application of improved genetic algorithm and support vector machine to clustering analysis of rock mass structural plane [J]. , 2014, 35(S2): 405-411.
[12] QIU Dao-hong ,LI Shu-cai ,XUE Yi-guo ,TIAN Hao ,YAN Mao-wang,. Advanced prediction of surrounding rock classification based on digital drilling technology and QGA-RBF neural network [J]. , 2014, 35(7): 2013-2018.
[13] MA Qin-yong, ZHANG Jing-shuang, CHEN Wen-feng, YUAN Pu. Analysis of SHPB test and impact compression in confining pressure for artificial frozen soil [J]. , 2014, 35(3): 637-640.
[14] LIN Yong-sheng, CHEN Sheng-hong. Search of three-dimensional slip surface for slope based on finite element calculation [J]. , 2013, 34(4): 1191-1196.
[15] LI Nan-sheng,TANG Bo,TAN Feng-jie,XIE Li-hui. Slope stability analysis of earth-rock dams based on unified strength criterion by genetic algorithm [J]. , 2013, 34(1): 243-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
[3] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[4] BING Hui , HE Ping. Experimental study of water and salt redistributions of saline soil with different freezing modes[J]. , 2011, 32(8): 2307 -2312 .
[5] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[6] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[7] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .
[8] FAN Shu-li ,CHEN Jian-yun ,ZHANG Jun-qing. Research on bearing capacity of inclined uplift pile under wave cyclic loading[J]. , 2012, 33(1): 301 -306 .
[9] LIU Fei-yu , YU Wei , CAI Yuan-qiang , ZHANG Meng-xi . Model test and numerical analysis of geogrid-reinforced pile-supported foundation[J]. , 2012, 33(S1): 244 -250 .
[10] ZHANG Le-wen, ZHANG De-yong, LI Shu-cai, QIU Dao-hong. Application of RBF neural network to rockburst prediction based on rough set theory[J]. , 2012, 33(S1): 270 -276 .