›› 2006, Vol. 27 ›› Issue (5): 803-806.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Centrifugal modeling of reinforced embankments on soft clay

CHEN Sheng-li1, 2, ZHANG Jian-min2, ZHANG Bin-yin2, YIN Kun-ting2   

  1. 1.Institute of Engineering Safety and Disaster Prevention, Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China; 2.School of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2004-09-06 Online:2006-05-10 Published:2013-11-05

Abstract: Three centrifugal model tests, i.e., unreinforced embankment, gauze reinforced embankment, and dacron reinforced embankment, are performed to study the behaviour of embankments on soft clay. Based on these tests, the distributions of the horizontal displacement and vertical displacement as well as the dissipation of the excess pore pressure in the clay foundation are obtained. The reinforcement mechanism of the geotexile is subsequently investigated, with particular emphasis on the effects of the reinforcement strength on the deformation and stability of the subsoil. Centrifuge test results show that the reinforcement can reduce both the settlement and the lateral displacement of the clay foundation, therefore contribute to the improvement the global stability. On the other hand, to guarantee the effectiveness of the reinforcement, the strength and modulus of the geotexile and those of the soil-geotexile interface should be comparable with each other.

Key words: centrifugal model tests, geotexile, reinforced embankment, soft clay

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
[2] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[3] LEI Hua-yang, LIU Guang-xue, ZHOU Jun, . Bearing property and failure mode of double-layer soft clay grounds in a dredger fill site [J]. Rock and Soil Mechanics, 2019, 40(1): 260-268.
[4] GUO Hong-xian, ZHOU Ding. Discussion on stability of soil nailing in excavation in soft clay [J]. Rock and Soil Mechanics, 2018, 39(S2): 398-404.
[5] SHI Gang, LIU Zhong-yu, LI Yong-hui. One-dimensional rheological consolidation of soft clay under cyclic loadings considering non-Darcy flow [J]. , 2018, 39(S1): 521-528.
[6] CHENG Xing-lei, WANG Jian-hua, WANG Zhe-xue,. Model experiment on cyclic instability process of suction anchors in soft clays [J]. , 2018, 39(9): 3285-3293.
[7] CHEN Fu-quan, LAI Feng-wen, LI Da-yong. State of the art in research of geosynthetic-reinforced embankment overlying voids [J]. , 2018, 39(9): 3362-3376.
[8] LIANG Cheng, XU Chao, . Study on critical height of reinforced embankments with geocell layer [J]. , 2018, 39(8): 2984-2990.
[9] CHEN Chao-bin, YE Guan-lin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test [J]. , 2018, 39(6): 2304-2310.
[10] YAN Shu-wang, ZHANG Jing-jing, TIAN Ying-hui, CHEN Hao,. Experiment and theory research on the pore pressure unloading characteristics of saturated clay under isotropic consolidation conditions [J]. , 2018, 39(3): 775-781.
[11] HU Xiu-qing , ZHANG Yan, FU Hong-tao, CHEN Lin, LUO Pan, NIE Yong, WANG Jun, . Effect of horizontal bidirectional coupled loads on dynamic properties of saturated soft clay [J]. , 2018, 39(3): 839-847.
[12] SONG Lin-hui, WANG Yu-hao, FU Lei, MEI Guo-xiong,. Test and analysis on buoyancy of underground structure in soft clay [J]. , 2018, 39(2): 753-758.
[13] CHEN Bo, SUN De-an, GAO You, LI Jian,. Experimental study of pore-size distribution of Shanghai soft clay [J]. , 2017, 38(9): 2523-2530.
[14] GAO Yan-bin, ZHANG Song-bo, GE Xiao-nan,. Comparisons of compression index of Chinese coastal soft clay and soils from foreign regions [J]. , 2017, 38(9): 2713-2720.
[15] QIU Li, CHAI Neng-bin, ZHU Bin, NI Wei-jie, JIANG Jie,. Uplift tests and uplift resistance analysis of pipe segment in soft backfill clay [J]. , 2017, 38(8): 2227-2233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[2] ZHONG Guo-sheng, XIONG Zheng-ming. Safety assessment of structure by blasting seism based on wavelet packet energy spectra[J]. , 2010, 31(5): 1522 -1528 .
[3] TIAN Qi-qiang,HOU Xing-min,WANG Zi-fa. A new method of subsoil damping ratio identification based on free vibration of a massive concrete foundation[J]. , 2011, 32(1): 211 -216 .
[4] ZHANG Ting,LIU Han-long,HU Yu-xia,STEWART Doug. Geotechnical drum centrifuge technique and its engineering application[J]. , 2009, 30(4): 1191 -1196 .
[5] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
[6] GAO Wen-hua, ZHU Jian-qun, ZHANG Zhi-min, HUANG Zi-yong. Numerical simulation of ultimate bearing capacity of soft rock foundation based on Hoek-Brown nonlinear failure criterion[J]. , 2011, 32(2): 593 -598 .
[7] ZHANG Gui-rong , CHENG Wei. Stability prediction for Bazimen landslide of Zigui County under the associative action of reservoir water lever fluctuations and rainfall infiltration[J]. , 2011, 32(S1): 476 -0482 .
[8] QIAN Yue-hong , LI Jie , CHEN Wen-tao , LI Wen-pei. Investigation of characteristics of failure nearby deep tunnel considering unloading time[J]. , 2011, 32(5): 1347 -1352 .
[9] HE Li-jun , KONG Ling-wei , WU Wen-jun , ZHANG Xian-wei , CAI Yu. A description of creep model for soft soil with fractional derivative[J]. , 2011, 32(S2): 239 -243 .
[10] ZHOU Bao-chun, KONG Ling-wei , GUO Ai-guo . Experimental study of characteristics of swelling-shrinkage and permeability for Jingmen weak expansive soil[J]. , 2011, 32(S2): 424 -429 .