›› 2006, Vol. 27 ›› Issue (3): 348-352.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Tensile strength and deformation characteristics of granular materials

XU Yong-fu1, LIN Fei2   

  1. 1. School of Naval, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China; 2.Planning and Design Institute of Communications of Jiangsu Province, Nanjing 200004, China
  • Received:2004-07-12 Online:2006-03-10 Published:2013-11-06

Abstract: Tensile strength and deformation theory of granular materials are derived from the fractal characteristics of particle failure. The tensile strength formulas of granular materials are derived under the assumption that granular materials are D-dimension fractal bodies. The surface area and surface energy increase as the occurrence of particle failure; thus, one-dimensional deformation expression of granular materials is obtained from the conservation of energy.

Key words: tensile strength, deformation, granular materials, failure

CLC Number: 

  • TV 641.4
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[2] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[3] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
[4] XU Jiang, QU Jia-mei, LIU Yi-xin, PENG Shou-jian, WANG Wei, WU Shan-kang, . Influence of filling material on the behavior of joints under cyclic shear loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1627-1637.
[5] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[6] WANG Gang, PAN Yi-shan, XIAO Xiao-chun, . Study and application of failure characteristics and charge law of coal body under uniaxial loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1823-1831.
[7] GU Dan-ping, LING Tong-hua, . Analysis of bearing ratio of cement soil and displacement at the top of wall for soil mixing wall construction method of cantilever type [J]. Rock and Soil Mechanics, 2019, 40(5): 1957-1965.
[8] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[9] ZHUANG Hai-yang, FU Ji-sai, CHEN Su, CHEN Guo-xing, WANG Xue-jian, . Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test [J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1272.
[10] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[11] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[12] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[13] WEI Xing, ZHANG Zhao, WANG Gang, ZHANG Jian-min, . DEM study of mechanism of large post-liquefaction deformation of saturated sand [J]. Rock and Soil Mechanics, 2019, 40(4): 1596-1602.
[14] GAO Jun, DANG Fa-ning, LI Hai-bin, YANG Chao, REN Jie, . Simplified analytical force analysis model of asphalt concrete core [J]. Rock and Soil Mechanics, 2019, 40(3): 971-977.
[15] WANG Yu-fei, LIU Run. Study on vertical-horizontal failure envelopes of shallow-embedded pipelines on sand [J]. Rock and Soil Mechanics, 2019, 40(3): 1129-1139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIE Ying, TANG Xiao-wei , LUAN Mao-tian. Finite-element free Galerkin coupling method for sand liquefaction-induced deformation[J]. , 2010, 31(8): 2643 -2647 .
[2] PENG Cong-wen,ZHU Xiang-rong,WANG Jin-chang. Preliminary study of two-scale model for analyzing brittle rock based on asymptotic expansion method[J]. , 2011, 32(1): 51 -62 .
[3] XUE Yun-liang, LI Shu-lin, LIN Feng, XU Hong-bin. Study of damage constitutive model of SFRC considering effect of damage threshold[J]. , 2009, 30(7): 1987 -1992 .
[4] LI Guo-yu,YU Wen-bing,MA Wei,QI Ji-lin,JIN Hui-jun,SHENG Yu. Experimental study of characteristics of frost and salt heaves of saline highway foundation soils in seasonally frozen regions in Gansu Province[J]. , 2009, 30(8): 2276 -2280 .
[5] LIU Yang, ZHAO Ming-jie. Theoretical model research on relationship between ultrasonic and stress of rock based on fractals and damage theory[J]. , 2009, 30(S1): 47 -52 .
[6] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[7] LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. , 2011, 32(S1): 100 -105 .
[8] DENG Hua-feng, LI Jian-lin, LIU Jie, ZHU Min, GUO Jing, LU Tao. Research on propagation of compression shear fracture in rocks considering fissure water pressure[J]. , 2011, 32(S1): 297 -0302 .
[9] DENG An-fu, ZHENG Bing, ZENG Xiang-yong. Numerical analysis of influence of building distance on superstructure and rock slope subgrade[J]. , 2009, 30(S2): 555 -559 .
[10] ZHANG Yi-ping ,WANG Yang ,LI Tao. Study of equivalent elastic parameters of composite foundations[J]. , 2011, 32(7): 2106 -2110 .