›› 2006, Vol. 27 ›› Issue (3): 378-382.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis research on soil fracturing around deep mixing column

SHEN Shui-long1, XU Ye-shuang1, CHANG Li-an2   

  1. 1.Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China; 2.Design Institute of Nonferrous Metallurgy, Xi’an 710001, China
  • Received:2004-07-17 Online:2006-03-10 Published:2013-11-06

Abstract: Field investigation has shown that the excess pore water pressure induced by deep mixing column installation may be higher than the hydraulic fracturing pressure. The interaction behavior between the deep mixing column and the surrounding soil can be simulated as the shearing-expanding process of a cylindrical cavity. An approach is proposed to analyse the soil fracturing due to tensile force. Analytical results indicate that the rotation of the mixing blades has a significant effect on the clay fracturing in a close region around the column. The proposed method has been verified against laboratory test. Fracturing cracks have two functions: firstly, cement slurry can flow into the fracturing crack; secondly, excess pore pressure may dissipate through fractures. These two effects speed up the strength recovery of the surrounding soil.

Key words: soft clay, deep mixing column, shearing-expanding process, clay fracturing, laboratory test, field investigation

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
[2] LEI Hua-yang, LIU Guang-xue, ZHOU Jun, . Bearing property and failure mode of double-layer soft clay grounds in a dredger fill site [J]. Rock and Soil Mechanics, 2019, 40(1): 260-268.
[3] GUO Hong-xian, ZHOU Ding. Discussion on stability of soil nailing in excavation in soft clay [J]. Rock and Soil Mechanics, 2018, 39(S2): 398-404.
[4] SHI Gang, LIU Zhong-yu, LI Yong-hui. One-dimensional rheological consolidation of soft clay under cyclic loadings considering non-Darcy flow [J]. , 2018, 39(S1): 521-528.
[5] CHENG Xing-lei, WANG Jian-hua, WANG Zhe-xue,. Model experiment on cyclic instability process of suction anchors in soft clays [J]. , 2018, 39(9): 3285-3293.
[6] ZHANG Cong, LIANG Jing-wei, ZHANG Jian, YANG Jun-sheng, ZHANG Gui-jin, YE Xin-tian,. Mechanism of Bingham fluid permeation and diffusion based on pulse injection [J]. , 2018, 39(8): 2740-2746.
[7] WANG Jun, WANG Chuang, HE Chuan, HU Xiong-yu, JIANG Ying-chao,. Heading stability analysis of EPB shield tunnel in sandy cobble ground using laboratory test and 3D DEM simulation [J]. , 2018, 39(8): 3038-3046.
[8] CHEN Chao-bin, YE Guan-lin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test [J]. , 2018, 39(6): 2304-2310.
[9] YAN Shu-wang, ZHANG Jing-jing, TIAN Ying-hui, CHEN Hao,. Experiment and theory research on the pore pressure unloading characteristics of saturated clay under isotropic consolidation conditions [J]. , 2018, 39(3): 775-781.
[10] HU Xiu-qing , ZHANG Yan, FU Hong-tao, CHEN Lin, LUO Pan, NIE Yong, WANG Jun, . Effect of horizontal bidirectional coupled loads on dynamic properties of saturated soft clay [J]. , 2018, 39(3): 839-847.
[11] WANG Ming-yuan, WU Jin-biao , ZHANG Jian-jing, LIAO Wei-ming , YAN Kong-ming,. Development of a cyclic loading instrument for laboratory model test and its experimental study [J]. , 2018, 39(3): 1145-1152.
[12] SONG Lin-hui, WANG Yu-hao, FU Lei, MEI Guo-xiong,. Test and analysis on buoyancy of underground structure in soft clay [J]. , 2018, 39(2): 753-758.
[13] SUN Kai-qiang, TANG Chao-sheng, LIU Chang-li, LI Hao-da, WANG Peng, LENG Ting. Research methods of soil desiccation cracking behavior [J]. , 2017, 38(S1): 11-26.
[14] YANG Hai-peng, BAI Bing, NIE Qing-ke,. Experimental study of influence of red mud leachate on cohesive soil and reinforced red mud [J]. , 2017, 38(S1): 299-304.
[15] CHEN Bo, SUN De-an, GAO You, LI Jian,. Experimental study of pore-size distribution of Shanghai soft clay [J]. , 2017, 38(9): 2523-2530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[2] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[3] ZHANG Lu-ming, ZHENG Ming-xin, HE Min. Study of characteristics of matric suction in landslide slip soils before and after landslide control[J]. , 2010, 31(10): 3305 -3312 .
[4] XIAO Lin, YANG Cheng-kui, HU Zeng-hui, LI Xiao-zhao, LI Mo. Model test on temperature distribution in metro tunnel surrounding rock and inverse calculation of its thermal conductivity[J]. , 2010, 31(S2): 86 -91 .
[5] CHEN Qing-yun, SUN Ji-zhu, WANG Ren. Triaxial experiment study of acoustic emission laws of calcareous sand[J]. , 2009, 30(7): 2027 -2030 .
[6] QIU En-xi, XIE Qiang, SHI Yue, ZHAO Wen. Application of modified SMR to redbed soft rock slopes[J]. , 2009, 30(7): 2109 -2113 .
[7] HUANG Ya-hong,Lü Yue-jun,ZHOU Yi,ZHAO Jian-tao,SHI Bing-xin. A method for estimating land subsidence induced by groundwater extraction and its application to site evaluation of Yizhuang light railway in Beijing[J]. , 2009, 30(8): 2457 -2462 .
[8] MENG Fan-bing , LIN Cong-mou , CAI li-guang , LI bo. Cumulative damage evaluation of clip rock in small-distance tunnels caused by blasting excavation and its application[J]. , 2011, 32(5): 1491 -1494 .
[9] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .
[10] ZHAO Lin , ZENG Xian-ming , LI Shi-min , LIN Da-lu , LU Wei-guo  . Comparative test study of blast-resistance performance of optimal composite anchorage structures and non-optimal composite anchorage structures[J]. , 2011, 32(S2): 76 -82 .