›› 2006, Vol. 27 ›› Issue (8): 1331-1334.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Finite element modeling of geomaterial using digital image processing and computerized tomography identification

LI Xiao-jun1, 2, ZHANG Jin-fu2, LIU Kai-nian2, ZHANG Xiao-ning3   

  1. 1. Insititute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. China Railway First Group Co. Ltd, Xi’an 710054, China; 3. College of Transportation, South China University of Technology, Guangzhou 510640, China
  • Received:2004-11-08 Online:2006-08-10 Published:2013-11-26

Abstract: A digital CT image processing based finite element method for 2-D mechanical analysis of geomaterials, is put forward. Digital image processing (DIP) is applied to convert computerized tomography (CT) image into a digital form that can be incorporated into finite element modeling. This CT discrimination based finite element modeling is used to analyze mechanical behavior of asphalt concrete indirect tensile test by taking into account the actual inhomogeneities and microstructures, especially voids distributions. The maxium tension stress appeared on the surface between voids and aggregates and the tension stress distribution along the loading axis of the sample is different.

Key words: computerized tomography (CT), digital image processing, geomaterial, finite element method

CLC Number: 

  • TU 521
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
    [2] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
    [3] LANG Ying-xian, LIANG Zheng-zhao, DUAN Dong, CAO Zhi-lin, . Three-dimensional parallel numerical simulation of porous rocks based on CT technology and digital image processing [J]. Rock and Soil Mechanics, 2019, 40(3): 1204-1212.
    [4] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
    [5] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
    [6] HUANG Wei, XIANG Wei, WANG Jing-e, CHENG Chao-jie, CUI De-shan, LIU Qing-bing,. Development and application of digital image processing technology based soil tensile apparatus [J]. , 2018, 39(9): 3486-3494.
    [7] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
    [8] XIA Jia-guo, GAO Wei, CHENG Ya-xing, HU Rui-lin, XU Pei-fen, SUI Hao-yue, . A new approach for precise detection of the geological structure of soil-rock mixture deposit and its application [J]. , 2018, 39(8): 3087-3094.
    [9] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
    [10] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
    [11] LIU Zhong-yu, ZHANG Jia-chao, ZHENG Zhan-lei, GUAN Cong. Finite element analysis of two-dimensional Biot’s consolidation with Hansbo’s flow [J]. Rock and Soil Mechanics, 2018, 39(12): 4617-4626.
    [12] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
    [13] TU Yi-liang, LIU Xin-rong, ZHONG Zu-liang, DU Li-bing, WANG Peng, . The unity of three types of slope failure criteria [J]. , 2018, 39(1): 173-180.
    [14] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
    [15] WANG Pei-tao, REN Fen-hua, TAN Wen-hui, YAN Zhen-xiong, CAI Mei-feng, YANG Tian-hong.. Model of roughness discrete fractures network for uniaxial compressive test and its mechanical properties [J]. , 2017, 38(S1): 70-78.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
    [2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
    [3] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
    [4] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
    [5] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
    [6] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
    [7] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
    [8] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
    [9] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
    [10] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .