›› 2005, Vol. 26 ›› Issue (9): 1456-1460.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Integral equation method to analyze negative skin friction on single pile in layered deposits

GAO Shao-wu1, 2, WANG Jian-hua1, MAO Na1   

  1. 1. Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China; 2. College of Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2004-03-22 Online:2005-09-10 Published:2013-12-30

Abstract: The negative friction problem of single pile, which is in layered porous half-space under the surface load, is studied by using Biot’s consolidation theory and integral equation method. The poroelastic half-space considered rheology is governed by Biot’s consolidation theory and the Merchant model is used to describe the porous half-space’s rheology. The second kind of Fredholm integral equations of the pile subjected to circular load in layered porous half-space is obtained by using the fundamental solution. The integral equations can be simplified by means of Laplace transform methods .These equations can be transferred to each layer by the transfer matrix and stiffness-matrix approach. By the numerical solutions of the integral equations and the corresponding inverse integral transforms the displacement, axial force, pore pressure and shear stress of the pile and pore pressure along the pile axis are obtained. It is indicated that the shear stress of the pile and pore pressure along the pile axis are obviously layer built.

Key words: negative friction, Biot consolidation, rheology, layered soil, recursive matrix

CLC Number: 

  • TU 472
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[2] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[3] FAN Ning, NIAN Ting-kai, ZHAO Wei, LU Shuang, SONG Lei, YIN Ping,. Rheological test and strength model of submarine mud flow [J]. , 2018, 39(9): 3195-3202.
[4] BAO Han-ying, CHEN Wen-hua, ZHANG Qian. Propagation of subway vertical vibration in layered soils based on thin layer method and moving coordinate system method [J]. , 2018, 39(9): 3277-3284.
[5] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
[6] HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, YANG Lin-qing,. Solution and analysis of dynamic stress response for transversely isotropic multilayered soil [J]. , 2018, 39(6): 2287-2294.
[7] AI Zhi-yong, ZHANG Yi-fan, WANG Lu-jun, . Extended precise integration solution for plane strain problem of transversely isotropic multilayered soils [J]. , 2018, 39(5): 1885-1890.
[8] XIONG Hui, JIANG Ya-feng, YU Rong-xia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform [J]. , 2018, 39(5): 1901-1907.
[9] ZHOU Ze-lin, CHEN Shou-gen, TU Peng, ZHANG Hai-sheng, . Coupling method for analyzing the influence on existing tunnel due to adjacent foundations pit excavation [J]. , 2018, 39(4): 1440-1449.
[10] JIANG Wen-yu, LIU Yi, . Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation [J]. Rock and Soil Mechanics, 2018, 39(12): 4554-4560.
[11] GAO Yan-bin. Use of time-dependent SBS method in undrained creep pore-pressure analysis of clay [J]. , 2018, 39(11): 4176-4182.
[12] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
[13] XIN Dong-dong, ZHANG Le-wen, SU Chuan-xi. Settlement research of pile groups in layered soils based on virtual soil-pile model [J]. , 2017, 38(8): 2368-2376.
[14] ZHANG Feng, ZHOU Feng, WANG Xu-dong,. Robust geotechnical design of a single pile under vertical loads in layered soils [J]. , 2017, 38(11): 3311-3318.
[15] YANG Cheng, WEN Chang-ping. Study of nonlinear rheology of improved expansive soil based on model theory and genetic creep theory [J]. , 2016, 37(S2): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] WANG Fei,WANG Yuan,NI Xiao-dong. Analysis of random characteristics of seepage field by stochastic finite element method[J]. , 2009, 30(11): 3539 -3542 .
[3] YANG Qiang, LIU Yao-ru, LENG Kuang-dai, Lü Qing-chao, YANG Chun-he. Stability and chain destruction analysis of underground energy storage cluster based on deformation reinforcement theory[J]. , 2009, 30(12): 3553 -3561 .
[4] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[5] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[6] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[7] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[8] HUANG Fu, YANG Xiao-li. Analytical solution of circular openings subjected to seepage in Hoek-Brown media[J]. , 2010, 31(5): 1627 -1632 .
[9] ZHANG Jian-min,WANG Fu-qiang. Post-liquefaction flow failure of saturated dilative sands and its mechanism[J]. , 2010, 31(9): 2711 -2715 .
[10] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .