›› 2004, Vol. 25 ›› Issue (2): 174-178.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Numerical analysis of soil arching effects in passive piles

ZHANG Jian-xun, CHEN Fu-quan, JIAN Hong-yu   

  1. Fujian University of Technology, Fuzhou 350007, China
  • Received:2003-04-29 Online:2004-02-10 Published:2014-07-15

Abstract: It has been well recognized for a long time that one of major mechanisms for stabilizing soil due to lateral movements by passive piles is soil arching effect, which is a phenomenon of transfer of stresses from a yielding mass of soil onto the adjoining stationary part of soil. The finite element analysis software package, Plaxis 8.1, is used to study soil arching effects in passive piles and the effects of factors on the behavior of soil arching effect such as soil properties, piles spacing ratio, interface of soil-pile and piles arrangement are discussed in detail. It is shown that the ratio of pile spacing to pile diameter is the most important factor affecting soil arching effect.

Key words: soil arching effect, passive pile, finite element method, numerical analysis

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[2] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[3] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, . A method to calculate rational spacing between pipes in pipe roofs considering soil arching effects [J]. Rock and Soil Mechanics, 2019, 40(5): 1993-2000.
[4] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[5] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[6] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[7] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[8] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[9] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[10] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[11] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[12] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[13] LAI Feng-wen, CHEN Fu-quan, WAN Liang-long,. Vertical stress calculation of shallow foundations based on partially developed soil arching effect [J]. , 2018, 39(7): 2546-2554.
[14] XU Chang-jie, LIANG Lu-ju, CHEN Qi-zhi, LIU Yuan-kun,. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone [J]. , 2018, 39(6): 1927-1934.
[15] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[3] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[4] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[5] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[6] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[7] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[8] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[9] WEI Xin-jiang,GUO Zhi-wei,WEI Gang,ZHANG Shi-min. Study of accident mechanism of shield launching considering seepage[J]. , 2011, 32(1): 106 -110 .
[10] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .