›› 2007, Vol. 28 ›› Issue (S1): 408-417.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A review of distinct element method researching progress and application

ZHOU Xian-qi1, 2, XU Wei-ya1, NIU Xin-qiang2, CUI Yu-zhu2   

  1. 1. Hohai University, Civil Engineering College, Nanjing 210098, China; 2. Yangtse River Institute of Survey, Planning, Design and Research, Water Resources Commission, Wuhan 430010, China
  • Received:2007-06-18 Online:2007-10-25 Published:2014-03-28

Abstract: The rock mass is a nonlinear and discontinuous medium. Considered from the modern engineering scale,there should be a much better understanding of its physico-mechanical properties. Comparing with it, numerical simulation is a much better tool to know it because its merits of less time, low cost, simple manipulation. The basic situation of discrete element method which applies more extensively and develops more maturely among the discontinuous medium numerical methods is introduced, the several typical problems are expounded in detail, the researching progress of discrete element method is introduced in detail, and its relevant applications are also introduced, then the summaries are generalized, several developmental directions for the future are discussed.

Key words: discrete element method, joint element, contact identification, phasor difference, visualization

CLC Number: 

  • TU 457
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
[2] XU Dong-dong, WU Ai-qing, LI Cong, WANG Bin, JIANG Yu-zhou, ZENG Ping, YANG Yong-tao, . An improved discontinuous deformation analysis method for simulation of whole fracturing process [J]. Rock and Soil Mechanics, 2019, 40(3): 1169-1178.
[3] ZHAO Lan-hao, RUI Kai-tian, LIU Xun-nan. A fast linear contact detection algorithm for discrete particles of arbitrary sizes [J]. Rock and Soil Mechanics, 2019, 40(3): 1187-1196.
[4] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[5] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[6] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
[7] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[8] ZHAO Ting-ting, FENG Yun-tian, WANG Ming, WANG Yong,. Modified Greenwood-Williamson model based stochastic discrete element method for contact with surface roughness [J]. , 2018, 39(9): 3440-3452.
[9] LIU Xun-nan, ZHAO Lan-hao, MAO Jia, XU Dong,. Discrete element method using three dimensional distance potential [J]. , 2018, 39(7): 2639-2650.
[10] ZHOU Xing-tao, SHENG Qian, CUI Zhen, LEN Xian-lun, FU Xiao-dong, MA Ya-li-na, . Dynamic artificial boundary setting methods for particle discrete element method [J]. , 2018, 39(7): 2671-2680.
[11] HU Wei-zhe, XIE Ling-zhi, CEN Wang-lai, YING Shi, LUO Yun-chuan, ZHAO Peng,. Mechanical characteristics of salt rock based on mesoscopic tests and discrete element method [J]. , 2018, 39(6): 2073-2081.
[12] LIU Yang, LI Shuang. Numerical simulation and analysis of meso-mechanical structure characteristic at critical state for granular media [J]. , 2018, 39(6): 2237-248.
[13] CUI Zhen, SHENG Qian, LENG Xian-lun, LUO Qing-zi,. Control effect of large geological discontinuity on seismic response and stability of underground rock caverns [J]. , 2018, 39(5): 1811-1824.
[14] ZHU De-fu, TU Shi-hao, YUAN Yong, MA Hang-sheng, LI Xiang-yang, . An approach to determine the compaction characteristics of fractured rock by 3D discrete element method [J]. , 2018, 39(3): 1047-1055.
[15] XUE Long, WANG Rui, ZHANG Jian-min, . DEM numerical test method for granular matter under complex 3D loading [J]. Rock and Soil Mechanics, 2018, 39(12): 4681-4690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[4] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[5] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[6] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[7] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[8] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[9] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[10] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .