›› 2007, Vol. 28 ›› Issue (S1): 430-436.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Construction project optimizing of soft rock and shallow buried tunnel

WANG Wei-feng1, BI Jun-li2   

  1. 1. Beijing Urban Engineering Design and Research Institute, Beijing 100037, China; 2. China Railway Tunnel Survey and Design Institute, Luoyang 471009, China
  • Received:2006-11-30 Online:2007-10-25 Published:2014-03-28

Abstract: Recently many problems such as surrounding rock collapse, large-area settlement of ground surface etc have happened during soft rock and shallow buried tunnel construction of express highway. The stratum condition of a shallow buried zone of Guangfu Tunnel is very complex. The section is large and the lithology is weak. The action of conformation has much influence on the shallow buried zone. And its top length is very thin. It is very easy to cause cave-in collapse and fall of ground. In order to ensure the construction safety of shallow buried zone tunnels and reduce the stratum settlement and surrounding rock deformation caused by the excavation of tunnels, four construction projects are simulated by FLAC3D as much full section method, shot shoulder method, unilateral pilot tunnel method and double pilot tunnel method. The variation feature of ground surface settlement, surrounding rock circumjacent displacement and plastic zone during the four excavation projects are analyzed. These four construction projects are computed with finite element method. Some valuable conclusions are drawn: (1) the double pilot tunnel method may produce fewer vertical displacements and horizontal convergence and its stabilization is better. (2) the plastic zone radius for double pilot tunnel method is least. (3) it is the most reasonable that double pilot tunnel method is adopted in the shallow buried zone of Guangfu Tunne1.

Key words: soft rock, shallow buried tunnel, construction projects, numerical simulation

CLC Number: 

  • U 451
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[2] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[3] YANG Qi-lai, XIONG Yong-lin, ZHANG Sheng, LIU Gan-bin, ZHENG Rong-yue, ZHANG Feng, . Elastoplastic constitutive model for soft rock considering temperature effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906.
[4] ZHANG Cong, LIANG Jing-wei, YANG Jun-sheng, CAO Lei, XIE Yi-peng, ZHANG Gui-jin, . Research on the diffusion mechanism and application of pulsate grouting in embankment and dam [J]. Rock and Soil Mechanics, 2019, 40(4): 1507-1514.
[5] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[6] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[7] SUN Guang-chen, XIE Jia-you, HE Shan, FU He-lin, JIANG Xue-liang, ZHENG Liang, . Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(3): 893-902.
[8] LANG Ying-xian, LIANG Zheng-zhao, DUAN Dong, CAO Zhi-lin, . Three-dimensional parallel numerical simulation of porous rocks based on CT technology and digital image processing [J]. Rock and Soil Mechanics, 2019, 40(3): 1204-1212.
[9] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[10] YANG Ai-wu, PAN Ya-xuan, CAO Yu, SHANG Ying-jie, WU Ke-long, . Laboratory experiment and numerical simulation of soft dredger fill with low vacuum pre-compression [J]. Rock and Soil Mechanics, 2019, 40(2): 539-548.
[11] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[12] CHEN Shang-yuan, ZHAO Fei, WANG Hong-jian, YUAN Guang-xiang, GUO Zhi-biao, YANG Jun, . Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine [J]. Rock and Soil Mechanics, 2019, 40(1): 332-342.
[13] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[14] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[15] ZHANG Zhi-guo, ZHANG Cheng-ping, MA Bing-bing, GONG Jian-fei, YE Tong. Physical model test and numerical simulation for anchor cable reinforcements of existing tunnel under action of landslide [J]. , 2018, 39(S1): 51-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wei,LI Xing-zhao. Analysis method of rigid piled raft foundation under vertical loading[J]. , 2009, 30(11): 3441 -3446 .
[2] LAN Si-qing, WANG Yu-lin, XIE Kang-he. Mathematical model and analytical solutions of soft soil consolidation with both way drainages in radial directions[J]. , 2009, 30(12): 3871 -3875 .
[3] SHAO Sheng-jun,ZHENG Wen,WANG Zheng-hong,WANG Shuai. Structural index of loess and its testing method[J]. , 2010, 31(1): 15 -19 .
[4] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[5] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[8] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Jun-feng , GUO Ying. Experimental research on effect of orientation of principal stress and initial sampling water content on monotonic shear behavior of saturated remolding silt[J]. , 2011, 32(S2): 324 -328 .