›› 2002, Vol. 23 ›› Issue (6): 721-724.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on elastoplasticity of structural marine soft soil

LEI Hua-yang   

  1. Institute of mechanics, Tianjin University, Tianjin 300072 , China
  • Received:2001-10-15 Online:2002-12-10 Published:2016-09-04

Abstract: Two problems of Tianjin pre-consolidation marine soft clay have been studied through large numbers of tests. One is the structure of soil; the other is elastoplastic model. The structural strength coefficient is led into for the first time, the relationship between microstructural quantitative parameters and mechanical parameters is established. A new kind of constitutive model is proposed to estimate the stress-strain relationship with the changes of structure and so as to offer a new channel for the structural model research and actual application of marine soft clay.

Key words: structural, marine soft soil, structural strength coefficient, elastoplastic model, structural model

CLC Number: 

  • TU 447
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHENG Qing-song, LIU En-long, LIU Ming-xing, . Influence of dip angle of structural planes on mechanical properties of artificial rock samples under triaxial test conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1854-1861.
[2] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[3] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[4] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[5] ZHANG Yu-wei, WENG Xiao-lin, SONG Zhan-ping, XIE Yong-li, . A modified Cam-clay model for structural and anisotropic loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1030-1038.
[6] YAO Zhi-hua, CHEN Zheng-han, FANG Xiang-wei, HUANG Xue-feng, . Elastoplastic damage seepage-consolidation coupled model of unsaturated intact loess and its application [J]. Rock and Soil Mechanics, 2019, 40(1): 216-226.
[7] FENG Li, ZHANG Mao-sheng, HU Wei, DONG Ying, MENG Xiao-jie. Discussion on microscopic, microcosmic characteristics and developmental mechanism of loess vertical joints [J]. Rock and Soil Mechanics, 2019, 40(1): 235-244.
[8] QIN Qing-ci, LI Ke-gang, YANG Bao-wei, WANG Ting, ZHANG Xue-ya, GUO Wen. Analysis of damage characteristics of key characteristic points in rock complete stress-strain process [J]. Rock and Soil Mechanics, 2018, 39(S2): 14-24.
[9] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[10] ZHOU Yong, ZHU Ya-wei,. Interaction between pile-anchor supporting structure and soil in deep excavation [J]. , 2018, 39(9): 3246-3252.
[11] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, FU-hua, SUN Chao-yi, SONG Xu-gen, . Ground movement and deformation caused by underground mining in eastern area of Chengchao iron mine [J]. , 2018, 39(9): 3385-3394.
[12] CHOU Ya-ling, JIA Shu-sheng, ZHANG Qing-hai, CAO Wei, SEHNG Yu,. The influence of freeze-thaw action on loess collapsibility coefficient considering soil structure [J]. , 2018, 39(8): 2715-2722.
[13] WANG Fei-li, WANG Shu-hong, XIU Zhan-guo. Method on stress quantification and strength characterization of rock structural plane under the disturbance of stress wave [J]. , 2018, 39(8): 2844-2850.
[14] LIU Song-yu, CAO Jing-jing, CAI Guang-hua, . Microstructural mechanism of reactive magnesia carbonated and stabilized silty clays [J]. , 2018, 39(5): 1543-1552.
[15] CUI Zhen, SHENG Qian, LENG Xian-lun, LUO Qing-zi,. Control effect of large geological discontinuity on seismic response and stability of underground rock caverns [J]. , 2018, 39(5): 1811-1824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[2] LU Zheng,YAO Hai-lin,LUO Xing-wen,HU Meng-ling. 3D vibration of pavement and double-layered subgrade coupled system subjected to a rectangular moving load[J]. , 2009, 30(11): 3493 -3499 .
[3] ZHU Wan-cheng, WEI Chen-hui, TIAN Jun, YANG Tian-hong, TANG Chun-an. Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application[J]. , 2009, 30(12): 3851 -3857 .
[4] QI Ji-lin,MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. , 2010, 31(1): 133 -143 .
[5] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[6] HU Xiao-jun,TAN Xiao-hui. Foundation counter force loading method for calculating internal forces of a whole elastic anti-sliding pile[J]. , 2010, 31(1): 299 -303 .
[7] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[8] LIU Gan-bin,ZHENG Rong-yue,LU Zheng. Thermo-hydro-elastodynamic response of spherical hollow chamber under explosive loading[J]. , 2010, 31(3): 918 -924 .
[9] JIN Chang-yu, ZHANG Chun-sheng, FENG Xia-ting. Research on influence of disturbed belt on stability of surrounding rock of large-scale underground caverns[J]. , 2010, 31(4): 1283 -1288 .
[10] ZHOU Yong-xi, ZHANG De-xuan, LUO Chun-yong, CHEN Jun. Experimental research on steady strength of saturated loess[J]. , 2010, 31(5): 1486 -1490 .