›› 2014, Vol. 35 ›› Issue (9): 2535-2542.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Permeability-stress sensitivity of complex lithology reservoir and its effect on gas well productivity

GOU Yan1, 2, SUN Jun-chang3, YANG Zheng-ming1, 3, ZHOU Xue-min4   

  1. 1. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang,Hebei 065007, China; 2. Research Institute of Petroleum Exploration and Development, Beijing 100083, China; 3. Langfang Branch, Research Institute of Petroleum Exploration and Development, Langfang, Hebei 065007, China; 3. Institute of Petroleum Exploration and Development, Daqing Oilfield Company, Daqing, Heilongjiang 163712, China
  • Received:2013-04-05 Online:2014-09-10 Published:2014-09-16

Abstract: Permeability-stress sensitivity of complex volcanic reservoir has been studied using the variable pore pressure-constant confining pressure method. Meanwhile, permeability stress-sensitivity obtained from two different experimental methods also has been compared. The experimental results indicate that the volcanic reservoir permeability declines with the decrease of reservoir pore pressure. Decrease of reservoir permeability mainly occurs in the pore pressure from 40 MPa to 25 MPa. There is no good relationship between rock initial permeability and its loss rate, which is different from that of the sedimentary sandstone reservoir. Permeability-stress sensitivity of tight volcanic gas reservoir obtained from variable pore pressure-constant confining pressure is much stronger than that obtained from constant pore pressure-variable confining pressure. And this difference becomes larger during the actual gas reservoir effective stress range. The gas well productivity equation has been mathematically derived taking permeability-stress sensitivity into consideration. Numerical results show that the absolute open flow potential(AOF) when considering the permeability-stress sensitivity is about 63.28% of that when the permeability is considered as constant during the gas reservoir production.

Key words: complex lithology reservoir, volcanic gas reservoir, permeability-stress sensitivity, effective stress, pore pressure, pore structure

CLC Number: 

  • TE 112.2
[1] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[2] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[3] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[4] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[5] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[6] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[7] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
[8] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[9] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[10] MAO Xiao-long, LIU Yue-tian, GUAN Wen-long, REN Xing-nan, FENG Yue-li, DING Zu-peng, . An effective stress equation for pore volume strain [J]. Rock and Soil Mechanics, 2019, 40(8): 3004-3010.
[11] ZHANG Qiang, LI Xiao-chun, ZHOU Ying-bo, SHI Lu, BAI Bing, . Shear behavior of the Triassic sandstone in Sichuan under high pore pressure of H2O/CO2 conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3028-3036.
[12] ZHANG Feng, CHEN Guo-xing, WU Qi, ZHOU Zheng-long. Experimental study on undrained behavior of saturated silt subject to wave loading [J]. Rock and Soil Mechanics, 2019, 40(7): 2695-2702.
[13] LIU Yu, ZHANG Wei, LIANG Xiao-long, XU Lin, TANG Xin-yu. Determination on representative element volume of Nanjing silty-fine sand for its spatial pore structure [J]. Rock and Soil Mechanics, 2019, 40(7): 2723-2729.
[14] WANG Shi-quan, WEI Ming-li, HE Xing-xing, ZHANG Ting-ting, XUE Qiang, . Study of water transfer mechanism during sediment solidification process based on nuclear magnetic resonance technology [J]. Rock and Soil Mechanics, 2019, 40(5): 1778-1786.
[15] ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, XIONG Hao, ZHOU Zheng-long, . Experimental investigation on a new incremental pore pressure model characterized by shear-volume strain coupling effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[10] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .