›› 2005, Vol. 26 ›› Issue (S1): 248-251.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of settlement analysis of composite foundation of CFG piles

PAN Xing   

  1. School of Civil Engineering ,Hefei University of Technology, Hefei 230009, China
  • Received:2005-01-21 Published:2005-12-15

Abstract: Composite foundation of CFG piles is a lately developing technique in ground treatment and characterized by great bearing capacity, little settlement in ground treatment, wide scope of application, low cost, convenient construction, etc. The consolidation mechanism and settlement form of composite foundation of CFG piles, are elaborated. Analysis of settlement was discussed in detail including computing thickness, influential factors, modulus of compressibility choice and computation of additional pressure, etc. Although some merits were put forward based on the theory of settlement control while computation of settlement, there are a lot of works to be done.

Key words: CFG pile, composite foundation, ground treatment, settlement

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[3] TANG Xiao-wu, YANG Xiao-qiu, YU Yue. Analytical solutions to drained consolidation of porous pipe pile [J]. Rock and Soil Mechanics, 2019, 40(4): 1248-1254.
[4] YIN Feng, ZHOU Hang, LIU Han-long, CHU Jian, . Experimental investigation on dynamic characteristics of XCC pile-geogrid composite foundation under static and dynamic loads of vehicles [J]. Rock and Soil Mechanics, 2019, 40(4): 1324-1330.
[5] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[6] LIU Cheng-yu, ZHANG Xiang, CHENG Kai, CHEN Bo-wen, . Experimental study of settlement caused by water and sand inrush in underground engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 843-851.
[7] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[8] RUI Rui, SUN Yi, ZHU Yong, WU Duan-zheng, XIA Yuan-you, . Mesoscopic working mechanism of cushion of composite foundation under rigid slab [J]. Rock and Soil Mechanics, 2019, 40(2): 445-454.
[9] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[10] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[11] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[12] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[13] DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, ZHANG Ji-wen, YU Yong-tang, . Settlement behavior of high loess-filled foundation and impact from exhaust conditions [J]. Rock and Soil Mechanics, 2019, 40(1): 325-331.
[14] YANG Gong-biao, ZHANG Cheng-ping, MIN Bo, CAI Yi, . Elastic solution of soil displacement induced by shallow circular tunnel with a cavern in a stratum using function of complex variable method [J]. Rock and Soil Mechanics, 2018, 39(S2): 25-36.
[15] ZHU Ning , ZHOU Yang , LIU Wei, SHI Pei-xin, WU Ben,. Study of silty soil behavior disturbed for installation of diaphragm wall in Suzhou [J]. , 2018, 39(S1): 529-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[4] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[5] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[6] SHEN Yin-bin, ZHU Da-yong, WANG Peng-cheng, YAO Hua-yan. Critical slip field of slopes based on numerical stress field[J]. , 2010, 31(S1): 419 -423 .
[7] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[8] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[9] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[10] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .