›› 2006, Vol. 27 ›› Issue (S1): 549-554.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effectiveness of fly ash as an expansive soil stabilizer

ZHA Fu-sheng, LIU Song-yu, DU Yan-jun   

  1. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
  • Received:2006-05-25 Published:2006-12-15

Abstract: The swelling, swelling pressure and moisture dependent shear strength of expansive soils pose serious problems to civil engineers. Disposal of large quantities of fly ash, which is an industrial waste, poses a major ecological problem. This paper studies the efficiency of fly ash without lime as an additive in improving the engineering characteristics of expansive soils. An experimental program has evaluated the effect of fly ash content on the particle size distribution, atterberg limits, specific gravity, plasticity, compaction, free swell index, swell indices under non-compression and with an axial compression of 50 kPa, swelling pressure and axial shrinkage percent characteristics of expansive soil. The plasticity index, activity, the optimum water content, the maximum dry unit weight, free swell index, swell potential, swelling pressure and axial shrinkage percent decreased with an increase in fly ash content. It is found that with the increase in the curing time, the swell potential and swelling pressure reduced. The unconfined compressive strength test results show that there is no remarkable change in the unconfined compressive strength of the soils immediately treated with fly ash alone. However, 7 days curing brings a remarkable increase in the unconfined compressive strength.

Key words: expansive soil, fly ash, physical properties, swell potential, swelling pressure, unconfined compressive strength

CLC Number: 

  • TU 44
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Dong-xing, XIAO Jie, XIAO Heng-lin, MA Qiang, . Experimental study of carbonated-solidified sludge in East Lake, Wuhan [J]. Rock and Soil Mechanics, 2019, 40(5): 1805-1812.
[2] TAN Yun-zhi, LI Hui, WANG Pei-rong, PENG Fan, FANG Yan-fen, . Hydro-mechanical performances of bentonite respond to heat-treated history [J]. Rock and Soil Mechanics, 2019, 40(2): 489-496.
[3] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[4] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[5] LI Guo-wei, SHI Sai-jie, HOU Yu-zhou, WU Jian-tao, LI Feng, WU Shao-p, . Experimental study of development technology of non-expansive soil in Yangtze River to Huaihe River water diversion experimental project [J]. Rock and Soil Mechanics, 2018, 39(S2): 302-314.
[6] HU Dong-xu, LI Xian , ZHOU Chao-yun, XUE Le, LIU Hong-fu, WANG Shi-ji. Quantitative analysis of swelling and shrinkage cracks in expansive soil [J]. , 2018, 39(S1): 318-324.
[7] YANG He-ping, TANG Xian-yuan, WANG Xing-zheng, XIAO Jie, NI Xiao,. Shear strength of expansive soils under wet-dry cycles with loading [J]. , 2018, 39(7): 2311-2317.
[8] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[9] ZHANG Chun-xiao, XIAO Hong-bin, BAO Jia-miao, YIN Ya-hu, YIN Duo-lin. Stress relaxation model of expansive soils based on fractional calculus [J]. , 2018, 39(5): 1747-1752.
[10] MAO Xin, WANG Shi-ji, CHENG Ming-shu, CHEN Zheng-han, WANG Xiao-qi,. Mechanical behavior of expansive soil under initial damage and wetting-drying cycles [J]. , 2018, 39(2): 571-579.
[11] ZHANG Ding-wen, XIANG Lian, CAO Zhi-guo, . Effect of CaO on ettringite stabilization/solidification of lead-contaminated soil [J]. , 2018, 39(1): 29-35.
[12] YAO Chuan-qin, WEI Chang-fu, MA Tian-tian, CHEN He-long, CHEN Huo-dong,. Effects of pore solution on mechanical properties of expansive soil [J]. , 2017, 38(S2): 116-122.
[13] XIAN Shao-hua, XU Ying-zi, YAO Hai-lin, LU Zheng, LI Zhi-yong, DONG Cheng,. Model test study of constraint to deformation of expansive soil by anchor reinforced vegetation system [J]. , 2017, 38(S1): 158-166.
[14] CHI Ze-cheng, CHEN Shan-xiong, ZHOU Zhe, DAI Zhang-jun, SONG Rui-jun, . An experimental study of three-dimensional swelling pressure of Hefei remolded expansive clay [J]. , 2017, 38(S1): 381-386.
[15] CHEN Zhi-guo, TANG Chao-sheng, YE Wei-min, WANG De-yin, . Volume change characteristics of bentonite-sand mixture under hydro-mechanical coupling condition [J]. , 2017, 38(4): 1041-1051.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Fei,WANG Yuan,NI Xiao-dong. Analysis of random characteristics of seepage field by stochastic finite element method[J]. , 2009, 30(11): 3539 -3542 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[5] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[6] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[7] WANG Guan-shi,LI Chang-hong,HU Shi-li,FENG Chun,LI Shi-hai. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. , 2010, 31(11): 3487 -3492 .
[8] XU Jiang, TANG Xiao-jun, LI Shu-chun, YANG Hong-wei, TAO Yun-qi. Experimental research on acoustic emission rules of rock under cyclic loading[J]. , 2009, 30(5): 1241 -1246 .
[9] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[10] WANG Zai-quan,ZHANG Li-ming,SUN Hui,ZHANG Ying-hui,KUANG Shun-yong. Experimental study of mechanical properties of limestone under different unloading velocities[J]. , 2011, 32(4): 1045 -1050 .