›› 2014, Vol. 35 ›› Issue (11): 3129-3138.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dilatancy of coarse-grained soil in large-scale triaxial tests study

JIANG Jing-shan1, 2, CHENG Zhan-lin2, ZUO Yong-zhen2, DING Hong-shun2   

  1. 1. School of Civil Engineering, Nanjing Institute of Technology, Nanjing 211167, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan 430010, China
  • Received:2013-10-13 Online:2014-11-11 Published:2014-12-10

Abstract: Dilatancy is a basic behavior of soils which is closely related to strength and deformation behaviors of soils and makes soils significantly different from normal elastic materials. Four groups of large-scale triaxial tests were conducted to investigate the influence of dilatancy on strength and deformation behaviors of coarse-grained soils at different initial densities. The test results show that: (1) The stress-strain curve shows softening behavior if volumetric strain rate (the ratio of volumetric strain increment to axial strain increment, assume positive for volumetric strain and axial strain under compressed condition) firstly decreases from a positive value to a negative value and then increases but still smaller than zero; the dilatancy and strength of the soil reach maximum at the minimum value of the ratio, otherwise the stress-strain curve behaves as hardening behavior if the ratio of volumetric strain increment to axial strain increment decreases monotonously from a positive value but always larger than zero. (2) The variation trend of volumetric strain depends on dilatancy and compressibility of soils; the volumetric strain is firstly compressive and then dilatant and stress-strain curve behaves as stress softening form if dilatancy rate (the negative of the ratio of volumetric strain increment caused by shear stress to axial strain increment) is larger than compression rate (the ratio of volumetric strain increment caused by compression stress to axial strain increment) in the late shear stage; otherwise the volumetric strain is always compressive and the stress-strain curve behaves as hardening behavior for the condition that dilatancy rate is smaller than compression rate in the whole shear stage. It is of great importance to know the dilatancy of coarse-grained soils for insight into the strength and deformation behaviors of coarse-grained soils.

Key words: coarse-grained soil, triaxial test, stress-strain relation, dilatancy, strength, deformation, Rowe dilatancy equation

CLC Number: 

  • TU 443
[1] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[2] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[3] SONG Yi-min, ZHANG Yue, XU Hai-liang, WANG Ya-fei, HE Zhi-jie. Study on creep-slip and stick-slip deformation evolution of rock based on non-uniform characteristics [J]. Rock and Soil Mechanics, 2020, 41(2): 363-371.
[4] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[5] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[6] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, SUN Jia-bao, . An asymptotic state constitutive model for saturated clay under partial drainage [J]. Rock and Soil Mechanics, 2020, 41(2): 485-491.
[7] LIANG Ke, CHEN Guo-xing, LIU Kang, WANG Yan-zhen, . Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading [J]. Rock and Soil Mechanics, 2020, 41(2): 601-611.
[8] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[9] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[10] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[11] ZHENG Kun, MENG Qing-shan, WANG Ren, YU Ke-fu, . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 205-213.
[12] WU Er-lu, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Experimental study of compaction characteristics of coarse-grained soil based on gradation equation [J]. Rock and Soil Mechanics, 2020, 41(1): 214-220.
[13] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[14] ZHOU Jia-zuo, WEI Chang-fu, WEI Hou-zhen, YANG Zhou-jie, LI Li-xin, LI Yan-long, DING Gen-rong, . Development and application of multi-functional triaxial test system for hydrate-bearing sediments [J]. Rock and Soil Mechanics, 2020, 41(1): 342-352.
[15] LI Zhi-cheng, FENG Xian-dao, SHENG Li-long, . Experimental study of deformation characteristics of pebble cushion with furrow for immersed tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 189-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[6] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[7] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[8] JIANG Zheng-wei, PENG Jian-bing, WANG Qi-yao. Adverse geological problems and countermeasure of Xi’an Metro Line 3[J]. , 2010, 31(S2): 317 -321 .
[9] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[10] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .