›› 2014, Vol. 35 ›› Issue (11): 3247-3252.

• Geotechnical Engineering • Previous Articles     Next Articles

Experimental investigation of construction of a 56 m deep constant thickness cement-soil wall using trench cutting re-mixing deep wall (TRD) method in deep aquifers

WANG Wei-dong1, 2, WENG Qi-ping1, 2, CHEN Yong-cai1, 2   

  1. 1. Department of Underground Structure & Geotechnical Engineering, East China Architecture Design & Research Institute, Shanghai 200002, China; 2. Shanghai Engineering Research Center of Safety Control for Facilities Adjacent to Deep Excavations, Shanghai 200002, China
  • Received:2014-06-03 Online:2014-11-11 Published:2014-12-10

Abstract: The excavation area of Shanghai International Financial Center, whose surrounding environment is complex, is 48 860 m2. The depth of the excavation ranges from 26.5 to 27.9 m. In order to minimize pumping effects of confined water on the surrounding environment, a 700 mm thick and 56 m deep constant thickness cement-soil wall has constructed as a watertight screen along the periphery of the excavation. As the first time to construct such a deep TRD wall in Shanghai, a series of tests had carried out on the site. The monitoring results show that the strength of the cement-soil wall has ranged from 0.84 MPa to 1.38 MPa in the deep aquifer. Laboratory permeability test results show that the permeability of the wall is increased from 10-3 cm/s to 10-7 cm/s. Both strength and permeability of the wall satisfied the design requirements for a watertight screen. During construction of the wall, the maximum surface settlement is about 8 mm and the main influence zone is approximately 5m away from the wall. It is also observed that lateral soil displacements mainly took place within 5 m from the wall. Therefore, the influence of the wall construction on the surrounding environment is negligible. The test results provide references for subsequent construction of the TRD walls and serve as a case study for similar projects in Shanghai as well.

Key words: excavation, constant thickness cement-soil wall, TRD construction method, watertight screen;aquifer

CLC Number: 

  • TU 471
[1] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[2] KE Jin-fu, WANG Shui-lin, ZHENG Hong, YANG Yong-tao, . Application and promotion of a modified symmetric and anti-symmetric decomposition-based three-dimensional numerical manifold method [J]. Rock and Soil Mechanics, 2020, 41(2): 695-706.
[3] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[4] DING Zhi, ZHANG Xiao, JIN Jie-ke, WANG Li-zhong, . Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423.
[5] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[6] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
[7] GU Dan-ping, LING Tong-hua, . Analysis of bearing ratio of cement soil and displacement at the top of wall for soil mixing wall construction method of cantilever type [J]. Rock and Soil Mechanics, 2019, 40(5): 1957-1965.
[8] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[9] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[10] KANG Yan-fei, CHEN Jie, JIANG De-yi, LIU Wei, FAN Jin-yang, WU Fei, JIANG Chang-qi, . Damage self-healing property of salt rock after brine immersion under different temperatures [J]. Rock and Soil Mechanics, 2019, 40(2): 601-609.
[11] HOU Gong-yu, LIANG Jin-ping, JING Hao-yong, HU Tao, ZHANG Guang-dong, TAN Jin-xin, YANG Xi, ZHANG Yong-kang, . Acoustic emission characteristics of thick-walled cylinder specimen subjected to triaxial loading during excavation unloading [J]. Rock and Soil Mechanics, 2019, 40(12): 4564-4572.
[12] ZHOU Zi-han, CHEN Zhong-hui, ZHANG Ling-fan, NIAN Geng-qian, WANG Jian-ming, JIAO Xing-fei. Energy principle based catastrophe study of slope stability in open-pit excavation [J]. Rock and Soil Mechanics, 2019, 40(12): 4881-4889.
[13] WU Chang-jiang, SUN Zhao-hua, LAI Yun-jin, BAO Hua, . Study of deformation characteristics of diaphragm wall induced by deep large excavation in soft soil region [J]. Rock and Soil Mechanics, 2018, 39(S2): 245-253.
[14] ZHANG Xiao, XIAO Jun-hua, NONG Xing-zhong, GUO Jia-qi, WU Nan, . Analysis of influenced zone of foundation pit excavation adjacent to bridge pile foundation using HS-Small constitutive model [J]. Rock and Soil Mechanics, 2018, 39(S2): 263-273.
[15] WANG Ke-zhong, JIN Zhi-hao, YANG Mai-zhen, LIU Xian-liang, LIU hua, . Permeability stability study of overhang rock cofferdam during excavating foundation pit of water intake tower [J]. Rock and Soil Mechanics, 2018, 39(S2): 415-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .