›› 2015, Vol. 36 ›› Issue (2): 311-319.doi: 10.16285/j.rsm.2015.02.002

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

State-of-the-art review of developments of laboratory tests on cemented calcareous soils

ZHU Chang-qi1, 2, ZHOU Bin2, 3, LIU Hai-feng2   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. General Contraction Company of CCTEB, Wuhan, Hubei 430064, China
  • Received:2014-06-30 Online:2015-02-11 Published:2018-06-13

Abstract: The naturally cemented calcareous soil is a carbonate soil or rock cemented by high-magnesium calcite or aragonite. It usually contains a large portion of coral and other tropical marine organism. Its unique engineering properties often result in troubles and difficulties in the geotechnical design and foundation construction. Its characteristics also attract research and experimental interests of many researchers. This paper presents state-of-the-art review of developments of the laboratory tests on both naturally and artificially cemented calcareous soils as well as the sample preparation techniques of artificially cemented soils. The general stress-strain behaviors of the cemented calcareous samples and factors that might affect its characteristics, such as confining pressure, initial sample density, and degree of cementation, are also summarized. The research work that could be improved is also proposed with an objective of providing a research guideline for the further studies of cemented calcareous soils.

Key words: cemented calcareous soil, artificially cementation, triaxial compression test, cyclic loading, failure state, small strain

CLC Number: 

  • TU 442
[1] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[2] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[3] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[4] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
[5] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[6] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[7] DONG Jian-xun, LIU Hai-xiao, LI Zhou. A bounding surface plasticity model of sand for cyclic loading analysis [J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
[8] YANG Xiao-bin, CHENG Hong-ming, LÜ Jia-qi, HOU Xin, NIE Chao-gang, . Energy consumption ratio evolution law of sandstones under triaxial cyclic loading [J]. Rock and Soil Mechanics, 2019, 40(10): 3751-3757.
[9] GAO Yuan, LIU Hai-xiao, LI Zhou. An explicit integration algorithm of the bounding-surface plasticity model for saturated sand under cyclic loading [J]. Rock and Soil Mechanics, 2019, 40(10): 3951-3958.
[10] LIU Bin, XU Hong-fa, DONG Lu, , MA Yu-qing, , LI Ke-liang, . A nonlinear rheological model of rock salt based on DS-dashpot under cyclic loading [J]. Rock and Soil Mechanics, 2018, 39(S2): 107-114.
[11] CUI De-shan, CHEN Qiong, XIANG Wei, WANG Jing-e, . Experimental study of stress relaxation characteristics of saturated sliding zone soils of Huangtupo landslide under triaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 209-216.
[12] SHI Gang, LIU Zhong-yu, LI Yong-hui. One-dimensional rheological consolidation of soft clay under cyclic loadings considering non-Darcy flow [J]. , 2018, 39(S1): 521-528.
[13] YANG Xiao-bin, HAN Xin-xing, LIU En-lai, ZHANG Zi-peng, WANG Xiao-yao, . Experimental study on the acoustic emission characteristics of non-uniform deformation evolution of granite under cyclic loading and unloading test [J]. , 2018, 39(8): 2732-2739.
[14] ZHANG Wei, LI Ya, ZHOU Song-wang, JIANG Zheng-bo, WU Fei, LIANG Wen-zhou,. Experimental research on cyclic behaviors of clay in the northern region of South China Sea [J]. , 2018, 39(7): 2413-2423.
[15] CHEN Chao-bin, YE Guan-lin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test [J]. , 2018, 39(6): 2304-2310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .