›› 2015, Vol. 36 ›› Issue (2): 430-436.doi: 10.16285/j.rsm.2015.02.018

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experiment study of seepage field monitoring in sandy soil using carbon coated heating optical fiber-based C-DTS

YAN Jun-fan1, SHI Bin1, CAO Ding-feng1, WEI Guang-qing2, ZHU Hong-hu1   

  1. 1. Department of Geo-engineering & Geo-informatics, Nanjing University, Nanjing, Jiangsu 210023, China; 2. Nanzee Sensing Technology Co., Ltd., Suzhou, Jiangsu 215123, China
  • Received:2013-10-25 Online:2015-02-11 Published:2018-06-13

Abstract: The seepage field monitoring of sandy soil is a necessary and basic work for disaster prevention and mitigation in geotechnical engineering. A distributed temperature system with the carbon coated heating optical fiber (C-DTS) is proposed on the basis of summarizing the advantages and disadvantages of the existing monitoring methods. The monitoring principle of the method is presented and the concept of the eigenvalue of temperature ( )is introduced based on the thermal diffusion theory and Ohm’s Law. After that, a seepage field simulation device for sandy soil and monitoring program are designed as well. An indoor test of the seepage monitoring is run, the linear relationship of the eigenvalue of temperature ( ) and the seepage velocity (V) is defined at different seepage velocities in sandy soil. The temperature descends as the seepage velocity increases, and their relationship complies with the formula derivation. The experiment results show that C-DTS can effectively improve the sensitivity of DTS monitoring and realize fully-distributed monitoring of seepage velocity in geotechnical engineering. Finally, some related research work for further applying to geotechnical engineering practice has been analyzed.

Key words: sandy soil, seepage field, carbon coated heating optical fiber, C-DTS, distributed monitoring

CLC Number: 

  • O 357.3
[1] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[2] CAO Hong, HU Yao, LUO Guan-yong. Research on approximate calculation method for incomplete wells with filter screen ends away from the confined aquifer level [J]. Rock and Soil Mechanics, 2019, 40(7): 2774-2780.
[3] XIE Qiang, TIAN Da-lang, LIU Jin-hui, ZHANG Jian-hua, ZHANG Zhi-bin, . Simulation of seepage flow on soil slope and special stress-correction technique [J]. Rock and Soil Mechanics, 2019, 40(3): 879-892.
[4] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[5] ZHOU Cui-ying, ZHAO Shan-shan, YANG Xu, LIU Zhen, . Improvement of eco-ester materials on sandy soils and engineering slope protection [J]. Rock and Soil Mechanics, 2019, 40(12): 4828-4837.
[6] WANG Dong-wei, LU Wu-ping, TANG Chao-sheng, ZHAO Hong-wei, LI Sheng-jie, LIN Luan, LENG Ting, . Sample preparation technique and microstructure quantification method for sandy soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4783-4792.
[7] SHA Fei, LI Shu-cai, LIN Chun-jin, LIU Ren-tai, ZHANG Qing-song, YANG Lei, LI Zhao-feng. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media [J]. Rock and Soil Mechanics, 2019, 40(11): 4259-4269.
[8] WANG Hai-bo, WU Qi, YANG Ping,. Effect of fines content on liquefaction resistance of saturated sandy soils [J]. , 2018, 39(8): 2771-2779.
[9] ZHANG Chen-yang, ZHANG Ming, ZHANG Tai-li, SUN Qiang, YANG Long,. Impact of dyke and its residual soil on seepage and stability of Zhonglin landslide [J]. , 2018, 39(7): 2617-2625.
[10] BI Jun, CHEN Wen-wu, DAI Peng-fei, LIN Gao-chao, . Influence of correction factor on fitting parameters of various types of Van Genuchten model [J]. , 2018, 39(4): 1302-1310.
[11] WANG Hong-bo, ZHANG Qing-song, LIU Ren-tai, LI Shu-cai,ZHANG Le-wen, ZHENG Zhuo, ZHANG Lian-zheng. Inverse analysis of seepage field from packer permeability test [J]. , 2018, 39(3): 985-992.
[12] WANG Zhi-liang, NIAN Yu-ze, SHEN Lin-fang, XU Ze-min,. Numerical simulation of macropores seepage field in the 3D reconstruction model of well vegetated slope soil based on LBM [J]. , 2018, 39(10): 3821-3829.
[13] WANG Bei-fang, LIANG Bing, SUN Ke-ming, WU Zhan-chao,SUN Wei-ji, JIANG Li-guo, WANG Jun-guang,. Research on overlying strata response and control during typical shallow coal seam longwall mining [J]. , 2017, 38(9): 2693-2700.
[14] CHEN Zhou-quan, HUANG Mao-song, . Simulation of non-coaxial characteristics of sandy soil based on state-dependent constitutive model [J]. , 2017, 38(7): 1959-1966.
[15] LI Shu-cai, FENG Xiao, LIU Ren-tai, ZHANG Le-wen, HAN Wei-wei, ZHENG Zhuo. Diffusion of grouting cement in sandy soil considering filtration effect [J]. , 2017, 38(4): 925-933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[8] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .