›› 2015, Vol. 36 ›› Issue (5): 1407-1414.doi: 10.16285/j.rsm.2015.05.024

• Geotechnical Engineering • Previous Articles     Next Articles

Squeezing deformation in layered surrounding rock and force characteristics of support system of a tunnel under high in-situ stress

SHA Peng1, 2, WU Fa-quan1, LI Xiang3, LIANG Ning1, 2, CHANG Jin-yuan4   

  1. 1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. China Railway First Survey & Design Institute Group Co., Ltd., Xi’an, Shaanxi 710043, China; 4. College of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2014-11-03 Online:2015-05-11 Published:2018-06-13

Abstract: The layered soft rock is widely distributed in Western China, such as slate, carbonaceous slate, phyllite, and so forth. During the tunnel excavation, geotechnical problems frequently occur in the surrounding rock, such as excessive overbreak and intense deformation associated with asymmetric squeezing, because of low strength, poor self-stability and intense anisotropy of structural strength in layered surrounding rock. Large deformation can result in intense damage to the primary support, and even splitting of secondary support, significantly influencing the construction and security of tunnels. At the site of Liangshui tunnel in Lanzhou-Chongqing railway, a series of real-time contact pressure monitoring tests is conducted at different positions in section between surrounding rock and support system. Mechanical responses of the support system are analyzed in time and spatial domains using the monitored contact pressure. In-situ monitoring and numerical inversion analyses of displacement are also performed. The results indicate that the contact pressure of support system shows irregular distribution in space, which agrees with the concentrated deformation position of the surrounding rock; and its variation often lasts for a long period of time due to the influence of excavation method. The failure of the steel arch frame takes place in the weak axis plane because of its smaller lateral anti-bending rigidity. Meanwhile, the monitoring data show that their occurrence significantly lags behind the stabilization of convergence deformation. Based on the force characteristics of the support system, a more reasonable design scheme is proposed for tunneling in such a kind of rock.

Key words: tunneling engineering, in-situ monitoring, support system, mechanical characteristics, numerical analysis

CLC Number: 

  • U 452
[1] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[2] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[3] ZHU Cai-hui, CUI Chen, LAN Kai-jiang, DONG Yong-qiang. The effects of the degradation of brick-clay structure and demolition of embedded buildings on the stability of Yulin City Wall [J]. Rock and Soil Mechanics, 2019, 40(8): 3153-3166.
[4] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[5] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[6] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[7] DONG Zhi-hong, DING Xiu-li, HUANG Shu-ling, WU Ai-qing, CHEN Sheng-hong, ZHOU Zhong, . Analysis of ageing-stress characteristics and long-term bearing risk of anchor cable for a large cavern in high geo-stress area [J]. Rock and Soil Mechanics, 2019, 40(1): 351-362.
[8] CHEN Wei-chang, WANG Si-jing, LI Li, ZHANG Xiao-ping, WANG Yan-bing, . Test on mechanical characteristics of modified ginger nut [J]. , 2018, 39(5): 1796-1804.
[9] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[10] ABI ERDI, ZHENG Ying-ren, FENG Xia-ting, CONG Yu. Relationship between particle micro and macro mechanical parameters of parallel-bond model [J]. , 2018, 39(4): 1289-1301.
[11] LI Yi-fan, DONG Shi-ming, PAN Xin, LI Nian-bin, YUAN Ye. Experimental study of mixed-mode I/III fracture of sandstone [J]. , 2018, 39(11): 4063-4070.
[12] WU Yong-sheng, TAN Zhong-sheng, YU Yu, JIANG Bo, YU Xian-bin,. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province [J]. , 2018, 39(1): 207-215.
[13] LIU Tian-xiang, WANG Zhong-fu, . Analysis of interaction when tunnel orthogonal crossing deep-seated landslide and the corresponding control measures [J]. , 2018, 39(1): 265-274.
[14] GUO Jian-qiang, LIU Xin-rong, ZHAO Qing,. Theoretical research on rock unloading mechanical characteristics [J]. , 2017, 38(S2): 123-130.
[15] LU Hong-jian ,LIANG Peng,GAN De-qing,ZHANG Song-lin,. Research on flow sedimentation law of filling slurry and mechanical characteristics of backfill body [J]. , 2017, 38(S1): 263-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[8] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .