›› 2017, Vol. 38 ›› Issue (3): 883-892.doi: 10.16285/j.rsm.2017.03.034

• Numerical Analysis • Previous Articles     Next Articles

A 2-D polygon discrete element method and program for simulating rockfill materials

LUO Tao1, 2, OOI E T2, CHAN A H C3, FU Shao-jun1   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. School of Engineering & IT, Federation University Australia, Ballarat 3350, Australia; 3. School of Engineering and ICT, University of Tasmania, Hobart 7000, Australia
  • Received:2016-01-12 Online:2017-03-11 Published:2018-06-05

Abstract: Every single particle is simulated by a polygon discrete element to capture the realistic shape of rockfill materials. A polygon discrete element method (PDEM) is developed by adopting a simple contact detection program and a polygon/polygon contact model. A linear program is adopted to detect the contact details between polygons. Then the normal contact force is calculated by a potential energy based polygon/polygon normal contact model, and a polygon discrete element calculation method is formed. Based on this method, a program called PDEM is developed to study the interaction between particles and both the translational and rotational motion of every particle from the microscopic view. The effect of micro-properties (e.g. particle shape, size, material properties et al.) on the macro-strength and deformation is enabled. A two-dimensional model test of a coarse aggregate was carried out by PDEM program. The stress and deformation laws consistent with the lab experiment were obtained, and the method and procedure were used to study the effectiveness of the rockfill.

Key words: rockfill materials, discrete element method, contact detection, contact model, PDEM, biaxial test

CLC Number: 

  • O 158

[1] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[2] YANG Ji-ming, ZHANG Xiao-yong, ZHANG Fu-you, ZENG Chao-feng, MEI Guo-xiong, . Mesoscopic study on bearing characteristics of pile foundation under pile-soil-cap combined interaction in sand [J]. Rock and Soil Mechanics, 2020, 41(7): 2271-2282.
[3] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[4] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
[5] WU Qi-xin, YANG Zhong-xuan. Incremental behavior of granular soils: a strain response envelope perspective [J]. Rock and Soil Mechanics, 2020, 41(3): 915-922.
[6] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[7] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[8] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[9] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
[10] ZHAO Lan-hao, RUI Kai-tian, LIU Xun-nan. A fast linear contact detection algorithm for discrete particles of arbitrary sizes [J]. Rock and Soil Mechanics, 2019, 40(3): 1187-1196.
[11] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[12] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[13] XIAO Si-you, SU Li-jun, JIANG Yuan-jun, LI Cheng, LIU Zhen-yu, . Influence of slope angle on mechanical properties of dry granular flow impacting vertical retaining wall [J]. Rock and Soil Mechanics, 2019, 40(11): 4341-4351.
[14] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
[15] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!