›› 2017, Vol. 38 ›› Issue (S2): 41-50.doi: 10.16285/j.rsm.2017.S2.006

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of influences of pore number and pore size on mechanical properties of marble

ZHANG Chuang1 .2, TANG Jian-xin1 .2, TENG Jun-yang1. 2, LI Chen-lin1 .2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. College of Resources and Environmental Sciences, Chongqing University, Chongqing 400044, China
  • Received:2017-01-01 Online:2017-11-23 Published:2018-06-05

Abstract: In order to analyze the influences of pore number and pore size on mechanical properties of marble, uniaxial compression tests are carried out on marble with different pore numbers and pore sizes; and with CT scanning of the specimens before and after destruction the characteristics of the spatial distribution of damage crack are studied. The results show that: (1) With increase of number or diameter of hole, elastic modulus, the peak strength, crack stress ,and crack stress level of hole gradually decrease. (2) With increase of the number or diameter of hole, tensile crack and shear crack increase while the far field crack decrease in the process of specimen failure; and the failure mode of the specimen is gradually transited from tensile failure to shear failure after the specimen failure; meanwhile, damage degree increased gradually. (3) Containing hole specimen under the condition of uniaxial compression, the failure process in the direction of before and after showing from one party to the other gradually failure, and in the direction of up and down showing from hole to the up and down gradually failure. (4) Under the condition of uniaxial compression with hole sample, and the damage distribution in the direction of before and after is decreases from one party to the other, while in the direction of up and down is performed gradually decrease from the hole to the up and down but it’s important to note that due to the superimposed effect of injury the maximum damage surface of the porous specimen is not located at the round hole but at the center of the two circular holes.

Key words: hole marble, mechanical properties, cracking characteristics, destruction process, failure mode, damage distribution characteristics

CLC Number: 

  • TU452

[1] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[2] XI Bao-ping, WU Yang-chun, WANG Shuai, XIONG Gui-ming, ZHAO Yang-sheng, . Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures [J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94.
[3] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[4] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[5] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[6] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[7] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[8] MENG Qing-bin, QIAN Wei, HAN Li-jun, YU Li-yuan, WANG Cong-kai, ZHOU Xing. Experimental study on formation mechanism and mechanical properties of regenerated structure of very weak cemented rock mass [J]. Rock and Soil Mechanics, 2020, 41(3): 799-812.
[9] TIAN Wei, WANG Zhen, ZHANG Li, YU Chen. Mechanical properties of 3D printed rock samples subjected to high temperature treatment [J]. Rock and Soil Mechanics, 2020, 41(3): 961-969.
[10] JIANG Nan, HUANG Lin, FENG Jun, ZHANG Sheng-liang, WANG Duo, . Research on design and calculation method of tunnel-type anchorage of railway suspension bridge [J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009.
[11] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[12] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[13] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[14] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[15] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!